ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ, 1) величина, характеризующая противодействие электрич. цепи (или её участка) электрическому току, измеряется в омах. Э. с. обусловлено передачей или преобразованием электрич. энергии в др. виды: при необратимом преобразовании злектрич. энергии (преим. в тепловую) Э. с. наз. сопротивлением активным; Э. с., обусловленное передачей энергии электрич. или магнитному полю (и обратно), наз. сопротивлением реактивным.

При постоянном токе Э. с. цепи (обозначается К) в соответствии с Ома законом равно отношению приложенного к ней напряжения U к силе протекающего тока I (при отсутствии в цепи др. источников тока или эдс).

При переменном токе (синусоидальном) Э. с. цепи равно Z = kor г2 + х2, где г - активное сопротивление, а х - реактивное сопротивление цепи, определяемое наличием в цепи индуктивности и электрической ёмкости (см. Сопротивление индуктивное. Сопротивление ёмкостное); величина Z наз. полным электрическим сопротивлением.

Активное сопротивление элемента электрич. цепи зависит как от формы элемента и его размеров, так и от материала, из к-рого он изготовлен. Для однородного по составу элемента в виде бруска, пластины, трубки или проволоки при постоянном его сечении S и длине /, R =
30-03-5.jpgгде р - удельное сопротивление, характеризующее материал элемента; измеряется в ом*м, ом*см
30-03-6.jpg

По удельному сопротивлению все вещества делятся на проводники (см. Металлы, Проводники), полупроводники (см. Полупроводники, Полупроводниковые материалы), изоляторы (см. Диэлектрики, Электроизоляционные материалы). При очень низких темп-pax Э. с. нек-рых металлов и сплавов падает до нуля (см. Сверхпроводимость, Сверхпроводники). Часто вместо удельного сопротивления, особенно при рассмотрении физ. природы Э. с., вводят величину, обратную удельному Э. с.,- электропроводность. 2) Термин "Э. с." в обиходе часто употребляют применительно к резистору или к.-л. др. элементу, присоединяемому к электрич. цепи, напр, для ограничения или регулирования силы тока в ней (см. Шунт, Реостат, Потенциометр).

Лит. см. при ст. Электропроводность.

ЭЛЕКТРИЧЕСТВО, совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрич. зарядов - электростатич. поля; см. Электростатика). Движущиеся заряды (электрический ток) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством к-рого осуществляется электромагнитное взаимодействие (учение о магнетизме, т. о., является составной частью общего учения об Э.). Электромагнитные явления описываются клас-сич. электродинамикой, в основе к-рой лежат Максвелла уравнения.

Законы классич. теории Э. охватывают огромную совокупность электромагнитных процессов. Среди 4 типов взаимодействий (электромагнитных, гравитационных, сильных и слабых), существующих в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц противоположных знаков, взаимодействия между к-рыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой - являются дальнодействую-щими в отличие от сильных взаимодействий. Строение атомных оболочек, сцепление атомов в молекулы (хим. силы) и образование конденсированного вещества определяются электромагнитным взаимодействием.

Историческая справка. Простейшие электрич. и магнитные явления известны ещё с глубокой древности. Были найдены минералы, притягивающие кусочки железа, а также обнаружено, что янтарь {греч. электрон, elektron, отсюда термин Э.), потёртый о шерсть, притягивает лёгкие предметы (электризация трением). Однако лишь в 1600 У. Гильберт впервые установил различие между электрич. и магнитными явлениями. Он открыл существование магнитных полюсов и неотделимость их друг от друга, а также установил, что земной шар - гигантский магнит.

В 17 - 1-й пол. 18 вв. проводились многочисленные опыты с наэлектризованными телами, были построены первые электростатич. машины, основанные на электризации трением, установлено существование электрич. зарядов двух родов (III. Дюфе), обнаружена электропроводность металлов (англ. учёный С. Грей). С изобретением первого конденсатора - лейденской банки (1745)- появилась возможность накапливать большие электрич. заряды. В 1747-53 Б. Франклин изложил первую последовательную теорию электрич. явлений, окончательно установил электрич. природу молнии и изобрёл молниеотвод.

Во 2-й пол. 18 в. началось количеств, изучение электрич. и магнитных явлений. Появились первые измерит, приборы - электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрич. зарядов (работы Кавендиша были опубликованы лишь в 1879). Этот основной закон электростатики (Кулона закон) впервые позволил создать метод измерения электрич. зарядов по силам взаимодействия между ними. Кулон установил также закон взаимодействия между полюсами длинных магнитов и ввёл понятие о магнитных зарядах, сосредоточенных на концах магнитов.

Следующий этап в развитии науки об Э. связан с открытием в кон. 18 в. Л. Галъвани "животного электричества" и работами А. Вольты, к-рый правильно истолковал опыты Гальвани присутствием в замкнутой цепи 2 разнородных металлов в жидкости и изобрёл первый источник электрич. тока - гальванич. элемент (т. н. вольтов столб, 1800), создающий непрерывный (постоянный) ток в течение длительного времени. В 1802 В. В. Петров, построив гальванич. элемент значительно большей мощности, открыл электрич. дугу, исследовал её свойства и указал на возможность применений её для освещения, а также для плавления и сварки металлов. Г. Дэви электролизом водных растворов щелочей получил (1807) неизвестные ранее металлы - натрий и калий. Дж. П. Джоуль установил (1841), что количество теплоты, выделяемой в проводнике электрическим током, пропорционально квадрату силы тока; этот закон был обоснован (1842) точными экспериментами Э. X. Ленца (закон Джоуля - Ленца). Г. Ом установил (1826) количеств, зависимость электрич. тока от напряжения в цепи. К. Ф. Гаусс сформулировал (1830) осн. теорему электростатики (см. Гаусса теорема).

Наиболее фундаментальное открытие было сделано X. Эрстедом в 1820; он обнаружил действие электрич. тока на магнитную стрелку - явление, свидетельствовавшее о связи между электричеством и магнетизмом. Вслед за этим в том же году А. М. Ампер установил закон взаимодействия электрич. токов (Ампера закон). Он показал также, что свойства постоянных магнитов могут быть объяснены на основе предположения о том, что в молекулах намагниченных тел циркулируют постоянные электрич. токи (молекулярные токи). Т. о., согласно Амперу, все магнитные явления сводятся к взаимодействиям токов, магнитных же зарядов не существует. Со времени открытий Эрстеда и Ампера учение о магнетизме сделалось составной частью учения об Э.

Со 2-й четв. 19 в. началось быстрое проникновение Э. в технику. В 20-х гг. появились первые электромагниты. Одним из первых применений Э. был телеграфный аппарат, в 30-40-х гг. построены электродвигатели и генераторы тока, а в 40-х гг.- электрич. осветительные устройства и т. д. Практич. применение Э. в дальнейшем всё более возрастало, что в свою очередь оказало существ, влияние на учение об Э.

В 30-40-х гг. 19 в. в развитие науки об Э. внёс большой вклад М. Фарадей- творец общего учения об электромагнитных явлениях, в к-ром все электрич. и магнитные явления рассматриваются с единой точки зрения. С помощью опытов он доказал, что действия электрич. зарядов и токов не зависят от способа их получения [до Фарадея различали

"обыкновенное" (полученное при электризации трением), атмосферное, "гальваническое", магнитное, термоэлектрическое, "животное" и др. виды Э.]. В 1831 Фарадей открыл индукцию электромагнитную - возбуждение электрич. тока в контуре, находящемся в переменном магнитном поле. Это явление (наблюдавшееся в 1832 также Дж. Генри) составляет фундамент электротехники. В 1833-34 Фарадей установил законы электролиза', эти его работы положили начало электрохимии. В дальнейшем он, пытаясь найти взаимосвязь электрич. ц магнитных явлений с оптическими, открыл поляризацию диэлектриков (1837), явления парамагнетизма и диамагнетизма (1845), магнитное вращение плоскости поляризации света (1845) и др.

Фарадей впервые ввёл представление об электрич. и магнитном полях. Он отрицал концепцию дальнодействия, сторонники к-рой считали, что тела непосредственно (через пустоту) на расстоянии действуют друг на друга. Согласно идеям Фарадея, взаимодействие между зарядами и токами осуществляется посредством промежуточных агентов: заряды и токи создают в окружающем пространстве электрич. или (соответственно) магнитное поля, с помощью к-рых взаимодействие передаётся от точки к точке (концепция близкодействия). В основе его представлений об электрич. и магнитном полях лежало понятие силовых линий, к-рые он рассматривал как механич. образования в гипотетич. среде - эфире, подобные растянутым упругим нитям или шнурам.

Идеи Фарадея о реальности электромагнитного поля не сразу получили признание. Первая математич. формулировка законов электромагнитной индукции была дана Ф. Нейманом в 1845 на языке концепции дальнодействия. Им же были введены важные понятия коэффициентов само- и взаимоиндукции токов. Значение этих понятий полностью раскрылось позднее, когда У. Томсон (лорд Кельвин) развил (1853) теорию электрич. колебаний в контуре, состоящем из конденсатора (электроёмкость) и катушки (индуктивность).

Большое значение для развития учения об Э. имело создание новых приборов и методов электрич. измерений, а также единая система электрич. и магнитных единиц измерений, созданная Гауссом и В. Вебером (см. Гаусса система единиц). В 1846 Вебер указал на связь силы тока с плотностью электрич. зарядов в проводнике и скоростью их упорядоченного перемещения. Он установил также закон взаимодействия движущихся точечных зарядов, к-рый содержал новую универсальную электродинамич. постоянную, представляющую собой отношение электростатич. и электромагнитных единиц заряда и имеющую размерность скорости. При экспериментальном определении (Вебер и Ф. Кольрауш, 1856) этой постоянной было получено значение, близкое к скорости света; это явилось определённым указанием на связь электромагнитных явлений с оптическими.

В 1861-73 учение об Э. получило своё развитие и завершение в работах Дж. К. Максвелла. Опираясь на эмпирич. законы электромагнитных явлений и введя гипотезу о порождении магнитного поля переменным электрич. полем, Максвелл сформулировал фундаментальные уравнения классич. электродинамики, названные его именем. При этом он, подобно Фарадею, рассматривал электромагнитные явления как нек-рую форму механич. процессов в эфире. Гл. новое следствие, вытекающее из этих уравнений,- существование электромагнитных волн, распространяющихся со скоростью света. Уравнения Максвелла легли в основу электромагнитной теории света. Решающее подтверждение теория Максвелла нашла в 1886-89, когда Г. Герц экспериментально установил существование электромагнитных волн. После его открытия были предприняты попытки установить связь с помощью электромагнитных волн, завершившиеся созданием радио, и начались интенсивные исследования в области радиотехники.

В кон. 19 - нач. 20 вв. начался новый этап в развитии теории Э. Исследования электрич. разрядов увенчались открытием Дж. Дж. Томсоном дискретности электрич. зарядов. В 1897 он измерил отношение заряда электрона к его массе, а в 1898 определил абс. величину заряда электрона. X. Лоренц, опираясь на открытие Томсона и выводы молекулярно-кинетической теории, заложил основы электронной теории строения вещества (см. Лоренца - Максвелла уравнения). В классич. электронной теории вещество рассматривается как совокупность электрически заряженных частиц, движение к-рых подчинено законам классич. механики. Уравнения Максвелла получаются из уравнений электронной теории статистич. усреднением.

Попытки применения законов классич. электродинамики к исследованию электромагнитных процессов в движущихся средах натолкнулись на существ, трудности. Стремясь разрешить их, А. Эйнштейн пришёл (1905) к относительности теории. Эта теория окончательно опровергла идею существования эфира, наделённого механич. свойствами. После создания теории относительности стало очевидно, что законы электродинамики не могут быть сведены к законам классич. механики.

На малых пространственно-временных интервалах становятся существенными квантовые свойства электромагнитного поля, не учитываемые классич. теорией Э. Квантовая теория электромагнитных процессов - квантовая электродинамика - была создана во 2-й четв. 20 в. Квантовая теория вещества и поля уже выходит за пределы учения об Э., изучает более фундаментальные проблемы, касающиеся законов движения элементарных частиц и их строения.

С открытием новых фактов и созданием новых теорий значение классич. учения об Э. не уменьшилось, были определены лишь границы применимости классич. электродинамики. В этих пределах уравнения Максвелла и классич. электронная теория сохраняют силу, являясь фундаментом совр. теории Э. Классич. электродинамика составляет основу большинства разделов электротехники, радиотехники, электроники и оптики (исключение составляет квантовая электроника). С помощью её уравнений было решено огромное число задач теоре-тич. и прикладного характера. В частности, многочисленные проблемы поведения плазмы в лабораторных условиях и в космосе решаются с помощью уравнений Максвелла (см. Плазма, Управляемый термоядерный синтез, Звёзды).

Лит.': Кудрявцев П. С., История физики, М., 1956; Льоцци М., История физики, пер. с итал., М., 1970; Максвелл Дж. К., Избр. соч. по теории электромагнитного поля, [пер. с англ.], М., 1952; Лоренц Г. А., Теория электронов и ее применение к явлениям света и теплового излучения, пер. с англ., 2 изд., М., 1953; Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976. Г. Я. Мякишев.

"ЭЛЕКТРИЧЕСТВО", ежемесячный научно-технич. журнал, орган АН СССР, Гос. комитета Сов. Мин. СССР по науке и технике и Центр, правления научно-технич. об-ва энергетики и электротех-нич. пром-сти. Один из старейших тех-нич. журналов; основан в 1880 в Петербурге по инициативе П. Н. Яблочкова, В. Н. Чиколева, Д. А. Лачинова, А. Н. Лодыгина и др.; с 1922 издаётся в Москве (перерывы в 1917-22, 1941 - 1944). Освещает актуальные вопросы теории и практики электроэнергетики и электротехники. Тираж (1978) ок. 19 тыс. экз.

ЭЛЕКТРО..., часть сложных слов, указывающая на отношение к электричеству (напр., электрод, электроскоп).

ЭЛЕКТРОАКУСТИКА, раздел прикладной акустики, содержание к-рого составляют теория, методы расчёта и конструирование электроакустических преобразователей. Часто к Э. относят теорию и методы расчёта представляющих интерес для прикладной акустики электромеханич. преобразователей (напр., звукоснимателей, рекордеров, виброметров, электромеханич. фильтров и трансформаторов и др.), связанных с электроакустич. преобразователями общностью физич. механизма, методов расчёта и конструирования. Э. тесно связана также со мн. др. разделами прикладной акустики, поскольку рассматриваемые ею электроакустич. преобразователи либо органически входят в состав различной акустич. аппаратуры (напр., при звуковещании, звукозаписи и воспроизведении звука, в ультразвуковой дефектоскопии и технологии, в гидроакустике, акустической голографии и др.), либо широко применяются при экспериментальных исследованиях (напр., в архитектурной и строит, акустике, медицине, геологии, океанографии, сейсморазведке, при измерении шумов и др.)

Основная задача Э.- установление соотношений между сигналами на входе и выходе преобразователя и отыскание условий, при к-рых преобразование осуществляется наиболее эффективно или с минимальными искажениями.

Э. как самостоят, раздел прикладной акустики сложилась в 1-й пол. 20 в., когда применение электроакустич. преобразователей приобрело массовый характер и стало постепенно проникать во всё новые области науки и техники. Первые работы по расчётам электроакустич. преобразователей относятся к концу 19 и началу 20 вв. и связаны с развитием телефонии, исследованиями колебаний пьезоэлектрич. и магнитострикционных резонаторов. Существенным прогрессом в технике электроакустич. преобразователей явилось создание метода электроакустич. аналогий и эквивалентных схем (см. Электроакустические и электромеханические аналогии). Важным шагом вперёд в теории расчёта электроакустич. преобразователей явилось затем использование метода электромеханич. многополюсников и метода эквивалентных схем для систем с т. н. распределенными постоянными, для к-рых амплитуда колебаний существенно зависит от их координат аналогично электрич. длинным линиям и волноводам.

Существенную роль в развитии Э. сыграли работы амер. учёных Ф. Морса и Л. Фолди (общая теория электромеханич. преобразователей с распределёнными связями), Г. Олсона (теория электромеханич. аналогий и эквивалентных схем), У. Мэзона (расчёт пьезоэлектрич. преобразователей и фильтров) и сов. учёных Н. Н. Андреева и Л. Я. Гутина (заложивших основы совр. методов расчёта пьезоэлектрич. и магнитострикционных преобразователей), В. В. Фурдуева (установившего различные виды соотношений на основе теоремы взаимности в электромеханич. системах), А. А. Хар-кевича (разработавшего и систематизировавшего общую теорию электроакустич. преобразователей) и др.

Лит.: Г у т и н Л. Я., Магнитострикцион-ные излучатели и приемники, "Журнал технической физики", 1945, т. 15, в. 12; его же, Пьезоэлектрические излучатели и приемники, там же, 1946, т. 16, в. 1; Ф у р д у е в В. В., Электроакустика, М,- Л., 1948; Харкевич А. А., Теория преобразователей, М.- Л., 1948; Физическая акустика, под ред. У. Мэзона, пер. с англ., М., 1966; С к у ч и к Е., Основы акустики, пер. с англ., т. 1 - 2. М., 1976. Р. Е. Пасынков.

ЭЛЕКТРОАКУСТИЧЕСКИЕ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ АНАЛОГИИ, аналогии в законах движения (колебаний) механич. колебат. систем и электрич. контуров. Гл. достоинство Э. и э. а.- возможность применения методов расчёта и анализа электрич. колебат. систем при рассмотрении свойств механич. и акустич. систем (рис.), основанная на сходстве дифференциальных ур-ний, описывающих состояние этих систем. На основании сопоставления сходных ур-ний составляется таблица соответствия электрич., механич. и акустич. аналогов, причём в зависимости от того, выбрано ли ур-ние последовательного или параллельного электрич. контура для сопоставления, различают 1-ю (прямую) и 2-ю (инверсионную) системы аналогий (см. табл. на стр. 50).

При рассмотрении акустич. систем наибольшее распространение получила 1-я система аналогий.

Э. и э. а. особенно полезны при определении свойств сложных механич. систем с неск. степенями свободы, анали-тич. исследование к-рых решением дифференциальных ур-ний весьма трудоёмко. Такие системы представляют в виде совокупности электрич. контуров и полученную электрическую схему (эквивалентную схему) анализируют приёмами электротехники. Метод Э. и э. а. применяется для расчёта электромеханических и электроакустических преобразователей.
 

Электрические величины

Механические величины

Акустические величины

1-я система

2-я система

1-я система

Напряжение (эдс) U

Сила F

Скорость v

 

ТОК i

Скорость v                       | Сила F

Объёмная скорость S v

Индуктивность L

Масса т

Податливость (гибкость) См

 

Ёмкость С

Податливость (гибкость) См

Масса т

 

Активное сопротивление R

Сопротивление механических потерь rм

Активная механическая проводимость

1/rм

 

Примечание. S - площадь, о - плотность среды, с - скорость звука в среде, V - объём.

Лит.: Фурдуев В. В., Электроакустика, М.- Л., 1948; О л ь с о н Г., Динамические аналогии, пер. с англ., М., 1947; М а т а у ш е к И., Ультразвуковая техника, пер. с нем., М., 1962.

ЭЛЕКТРОАКУСТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ, устройства, преобразующие электрич. энергию в акустическую (энергию упругих колебаний среды) и обратно. В зависимости от направления преобразования различают Э. п.: излучатели и приёмники. Э. п. широко используют для излучения и приёма звука в технике связи и звуковоспроизведения, для измерения и приёма упругих колебаний в ультразвуковой технике, гидролокации и в акустоэлектронике. Наиболее распространённые Э. п. линейны, т. е. удовлетворяют требованию неискажённой передачи сигнала, и обратимы, т. е. могут работать и как излучатель, и как приёмник, и подчиняются принципу взаимности. В большинстве Э. п. имеет место двойное преобразование энергии(рис.): электромеханическое, в результате к-рого часть подводимой к преобразователю электрич. энергии переходит в энергию колебаний нек-рой механич. системы, и механоакустическое, при к-ром за счёт колебаний механич. системы в среде создаётся звуковое поле.

Существуют Э. п., не имеющие механич. колебат. системы и создающие колебания непосредственно в среде, напр, электроискровой излучатель, возбуждающий интенсивные звуковые колебания в результате электрич. разряда в жидкости, излучатель, действие к-рого основано на электрострикции жидкостей.

Эти излучатели необратимы и применяются редко. К особому классу Э. п. относятся приёмники звука (также необратимые), основанные на изменении электрич. сопротивления чувствит. элемента под влиянием звукового давления, напр, угольный микрофон или полупроводниковые приёмники, в к-рых используется т. н. тензорезистивный эффект - зависимость сопротивления полупроводников от механич. напряжений. Когда Э. п. служит излучателем, на его входе задаются электрич. напряжение U и ток i, определяющие его колебат. скорость v и звуковое давление р в его поле; на входе Э. п.- приёмника действует давление р или колебат. скорость V, обусловливающие напряжение V и ток / на его выходе (на электрич. стороне). Теоретич. расчёт Э. п. предусматривает установление связи между его входными и выходными параметрами.

Колебат. механич. системами Э. п. могут быть стержни, пластинки, оболочки различной формы (полые цилиндры, сферы, совершающие различного вида колебания), механич. системы более сложной конфигурации. Колебат. скорости и деформации, возникающие в системе под воздействием сил, распределённых по её объёму, могут, в свою очередь, иметь достаточно сложное распределение. В ряде случаев, однако, в механич. системе можно указать элементы, колебания к-рых с достаточным приближением характеризуются только кинетической, потенциальной энергиями и энергией механич. потерь. Эти элементы имеют характер соответственно массы М, упругости 1/С и активного механич. сопротивления r (т. н. системы с сосредоточенными параметрами). Часто реальную систему удаётся искусственно свести к эквивалентной ей (в смысле баланса энергий) системе с сосредоточенными параметрами, определив т. н. эквивалентные массу Мэкв, упругость 1/Сэк" и сопротивление трению rм. Расчёт механич. систем с сосредоточенными параметрами может быть произведён методом электромеханич. аналогий (см. Электроакустические и электромеханические аналогии). В большинстве случаев при электромеханич. преобразовании преобладает преобразование в механич. энергию энергии либо электрического, либо магнитного поля (и обратно), соответственно чему обратимые Э. п. могут быть разбиты на след, группы: электродинамические преобразователи, действие к-рых основано на электродинамич. эффекте (излучатели) и электромагнитной индукции (приёмники), напр, громкоговорители, микрофон; электростатические, действие к-рых основано на изменении силы притяжения обкладок при изменении напряжения и на изменении заряда или напряжения при относит, перемещении обкладок конденсатора (громкоговорители, микрофоны); пьезоэлектрич. преобразователи, основанные на прямом и обратном пьезоэффекте (см. Пьезоэлектричество); электромагнитные преобразователи, основанные на колебаниях ферромагнитного якоря в переменном магнитном поле и изменении магнитного потока при движении якоря; магнитострикци-онные преобразователи, использующие прямой и обратный эффект магнито-стрикции.

Свойства Э. п.- приёмника характеризуются его чувствительностью в режиме холостого хода уxx = V/p и внутр. сопротивлением Zэл. По виду частотной зависимости V/p различают широкополосные и резонансные приёмники. Работу Э. п.- излучателя характеризуют: чувствительность, равная отношению р на определённом расстоянии от него на оси характеристики направленности к U или i; внутр. сопротивление, представляющее собой нагрузку для источника электрич. энергии; акустоэлектрич. кпд а/ эл= W/Wэл, где WaK - активная акустич. мощность в нагрузке, Wэл - активная электоич. потребляемая мощность, WaK = Zн v02 (vо - колебат. скорость точки центра приведения на излучающей поверхнссти, ZH - сопротивление акустич. нагрузки, равное сопротивлению излучения Zs, при контакте Э. п. со сплошной средой). Перечисленные параметры зависят от частоты. Величины р и кпд а/элдостигают макс, значения на частотах механич. резонанса, вследствие чего мощные излучатели делают, как правило, резонансными. Конструкции Э. п. существенно зависят от их назначения и применения и поэтому весьма разнообразны.

Лит.: Фурдуев В. В., Электроакусти" ка, М.- Л., 1948; X а р к ё в и ч А. А., Тео" рия преобразователей, М.- Л,, 1948; М а т а у ш е к И., Ультразвуковая техника, пер. с нем., М., 1962; Ультразвуковые преобразователи, под ред. Е. Кикучи, пер. с англ., М., 1972. Б. С. Аронов, Р. Е. Пасынков.

ЭЛЕКТРОАЭРОЗОЛЬТЕРАПЙЯ, лечение аэрозолями лекарств, веществ, частицы к-рых имеют электрич. заряд; метод физиотерапии. В отличие от аэрозолей, электроаэрозоли благодаря одноимённому (чаще отрицательному) заряду частиц обеспечивают максимальную устойчивость дисперсной системы, более глубокое проникновение медикаментов в ткани, их высокую концентрацию и более длительное пребывание в организме. Для получения электроаэрозолей используют спец. аппараты, например ручной генератор электроаэрозолей, генератор электроаэрозолей камерный (ГЭК-1). Э. применяют главным образом в виде ингаляций (для профилактики послеоперационных пневмоний, лечения острых и хронич. заболеваний органов дыхания и др.), реже - в виде местного воздействия (при трофич. язвах, ранах, заживающих вторичным натяжением, и др.). См. также Аэрозолътерапия.

Лит.: Эйдельштейн С. М., Основы аэрозольтерашш, М., 1967; Справочник по физиотерапии, М., 1976.
 

ЭЛЕКТРОБАЛАНС, см. Энергетический баланс.

ЭЛЕКТРОБАЛЛАСТЕР, балластер, путевая машина, распределяющая балласт под шпалами, осуществляющая подъёмку и сдвижку (рихтовку) рельсо-шпальной решётки, а также др. работы при реконструкции, ремонте и строительстве ж.-д. пути. Механизм подъёма рельсо-шпальной решётки имеет 2 электромагнита для захвата рельсов и электровинтовые приводы для их подъёма и сдвига. Э. оборудуется дозатором балласта и балластёрными рамами для его разравнивания под шпалами, щётками для сметания излишка балласта. По конструкции различают Э. с шарниро-сочленённой рамой и консольные. У первых оборудование размещено на 2 фермах, соединённых между собой шарниром. У консольных Э., используемых при строительстве ж.-д. пути, механизм подъёма рельсо-шпальной решётки расположен впереди на консольной части фермы.

ЭЛЕКТРОБУР, забойная буровая машина с погружным электродвигателем, предназначенная для бурения глубоких скважин, преим. на нефть и газ. Идея Э. для ударного бурения принадлежит рус. инж. В. И. Делову (1899). В 1938-40 в СССР А. П. Островским и Н. В. Александровым создан и применён первый в мире Э. для вращат. бурения, спускаемый в скважину на бурильных трубах.

Э. состоит из маслонаполненного электродвигателя и шпинделя. Мощность трёхфазного электродвигателя зависит от диаметра Э. и составляет 75-240 квт. Для увеличения вращающего момента Э. применяют редукторные вставки, монтируемые между двигателем и шпинделем и снижающие частоту вращения до 350, 220, 150, 70 об/мин. Частота вращения безредукторного Э. 455-685 об/мин. Длина Э. 12-16 м, наружный диаметр 164-290 мм.

При бурении Э., присоединённый к низу бурильной колонны, передаёт вращение буровому долоту. Электроэнергия подводится к Э. по кабелю, смонтированному отрезками в бурильных трубах. При свинчивании труб отрезки кабеля сращиваются спец. контактными соединениями. К кабелю электроэнергия подводится через токоприёмник, скользящие контакты к-рого позволяют проворачивать колонну бурильных труб. Для непрерывного контроля пространств, положения ствола скважины и технологич. параметров бурения при проходке наклонно направленных и разветвлённо-горизонталь-ных скважин используется спец. погруж-ная аппаратура (в т. ч. телеметрическая). При бурении Э. очистка забоя осуществляется буровым раствором, воздухом или газом.

В СССР с помощью Э. проходится св. 300 тыс. м скважин (св. 2% общего объёма бурения). Использование Э., благодаря наличию линии связи с забоем, особенно ценно для исследования режимов бурения.

Лит.: Фоменко Ф. Н., Бурение скважин электробуром, М., 1974.

Р. А. Иоаннесян.

ЭЛЕКТРОВАКУУМНЫЕ ПРИБОРЫ (ЭВП), приборы для генерации, усиления и преобразования электромагнитной энергии, в к-рых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы жёсткой газонепроницаемой оболочкой. К ЭВП относятся лампы накаливания, вакуумные электронные приборы (в к-рых поток электронов проходит в вакууме), газоразрядные электронные приборы (в к-рых поток электронов проходит в газе).

Лампы накаливания - наиболее массовый вид ЭВП (в 70-х гг. 20 в. ежегодный мировой выпуск составляет ок. 10 млрд. штук). Удаление воздуха из баллона лампы предотвращает окисление нити накала кислородом. Для уменьшения испарения накалённой нити лампы накаливания нек-рых типов после удаления воздуха наполняют инертным газом. Это позволяет повысить рабочую темп-ру нити накала и тем самым - световую отдачу ламп без изменения срока их службы. Присутствие инертного газа не влияет на процесс преобразования подводимой к лампе электрич. энергии в световую.

Вакуумные электронные приборы изготовляют с таким расчётом, чтобы в рабочем режиме давление остаточных газов внутри баллона составляло 10-6 - 10-10 мм рт. ст. При такой степени разрежения ионы остаточных газов не влияют на траектории электронов и шумы, создаваемые потоком этих ионов при их движении к катоду, достаточно малы. Такие ЭВП охватывают след, классы приборов. 1) Электронные лампы - триоды, тетроды, пентоды и т. д.; предназначены для преобразования энергии постоянного тока в энергию электрич. колебаний с частотой до 3-Ю9гц. Осн. области применения электронных ламп - радиотехника, радиосвязь, радиовещание, телевидение. 2) ЭВП СВЧ - магнетроны и маг-нетронного типа приборы, пролётные и отражательные клистроны, лампы бегущей волны и лампы обратной волны и т. д.; предназначены для преобразования энергии постоянного тока в энергию электромагнитных колебаний с частотами от 3*Ю8 до 3*Ю12гц. ЭВП СВЧ используются гл. обр. в устройствах радиолокации, телевидения (для передачи телевиз. сигналов по линиям радиорелейной связи, спутниковым линиям), СВЧ радиосвязи, телеуправления (напр., ИСЗ и космич. кораблями). 3) Электроннолучевые приборы - осциллографиче-ские электроннолучевые трубки, кинескопы, запоминающие электроннолучевые трубки и т. д.; предназначены для различного рода преобразований информации, представленной в форме электрич. или световых сигналов (напр., визуализации электрич. сигналов, преобразования двумерного оптич. изображения в последовательность телевиз. сигналов и наоборот). 4) Фотоэлектронные приборы - передающие телевизионные трубки, фотоэлектронные умножители, вакуумные фотоэлементы; служат для преобразования оптич. излучения в электрич. ток и применяются в устройствах автоматики, телевидения, астрономии, ядерной физики, звукового кино, факсимильной связи и т. д. 5) Вакуумные индикаторы - электронносветовые индикаторы, цифровые индикаторные лампы и др. Работа индикаторных ламп основана на преобразовании энергии постоянного тока в световую энергию. Применяются в измерит, приборах, устройствах отображения информации, радиоприёмниках и т. д. 6) Рентгеновские трубки; преобразуют энергию постоянного тока в рентгеновские лучи. Применяются: в медицине - для диагностики ряда заболеваний; в пром-сти - для обнаружения невидимых внутренних дефектов в различных изделиях; в физике и химии - для определения структуры и параметров кристаллич. решёток твёрдых тел, хим. состава вещества, структуры органических веществ; в биологии - для определения структуры сложных молекул.

В газоразрядных электронных приборах (ионных приборах) давление газа обычно значительно ниже атмосферного (поэтому их и относят к ЭВП). Класс газоразрядных ЭВП охватывает след, виды приборов. 1) Ионные приборы большой мощности (до неск. Мвт при токах до ..тысячи а), действие к-рых основано на нейтрализации объёмного заряда ионами газа. К таким ЭВП относятся ртутные вентили., используемые для преобразования переменного тока в постоянный в пром-сти, на ж.-д. транспорте и в др. отраслях; импульсные водородные тиратроны и та-ситроны, служащие для преобразования пост, тока в импульсный в устройствах радиолокации, электроискровой обработки металлов и др.; искровые разрядники и клипперные приборы, применяемые для защиты аппаратуры от перенапряжений. 2) Газоразрядные источники света непрерывного излучения, используемые для освещения помещений, улиц, в светящихся рекламах, киноаппаратуре и т. д., и импульсные источники света, применяемые в устройствах автоматики и телемеханики, передачи информации, оптич. локации и т. д. 3) Индикаторы газоразрядные (сигнальные, знаковые, линейные, матричные), служащие для визуального воспроизведения информации в ЭВМ и др. устройствах. 4) Квантовые газоразрядные приборы, преобразующие энергию пост, тока в когерентное излучение - газовые лазеры, квантовые стандарты частоты.

Мит. см. при ст. Электронные приборы.

^. Ф. Коваленко,

ЭЛЕКТРОВАКУУМНЫЙ ДИОД, двух-электродная электронная лампа, разновидность диода. Используется гл. обр. в качестве кенотрона. Характеризуется отсутствием обратного тока и выдерживает более высокие обратные напряжения, чем газоразрядные и полупроводниковые диоды. Э. д. подразделяются на низковольтные маломощные (обратное напряжение не превышает 2 кв; выпрямленный ток до 0,4 а), высоковольтные маломощные (30 кв; 0,002 а), высоковольтные импульсные (60 кв; 100 а), высоковольтные рентгеновские (220 кв; 2 а). С развитием полупроводниковой электроники Э. д. вытесняются полупроводниковыми диодами, обладающими большим кпд.

Лит. см. при ст. Электронная лампа.

ЭЛЕКТРОВАЛЕНТНАЯ СВЯЗЬ, то же, что ионная связь.

ЭЛЕКТРОВОЗ, локомотив, приводимый в движение тяговыми электродвигателями, получающими электрич. энергию от контактной сети или (реже) и от аккумуляторов, установленных на самом Э. (контактно-аккумуляторный Э.), или только от аккумуляторов (аккумуляторный Э.). По назначению Э. подразделяются на магистральные (грузовые, пассажирские, грузо-пассажирские), маневровые, промышленные и рудничные, а по роду используемого тока - на Э. постоянного и переменного тока и комбинированные. Для повышения провозной и пропускной способности жел. дорог можно использовать одновременно неск. Э., осуществляя управление из кабины одного из них.

Первый сов. магистральный Э. построен в 1932 (совместно Коломенским з-дом и моек, з-дом "Динамо"), В СССР на жел. дорогах работают магистральные Э. постоянного тока напряжением 3 кв и Э. однофазного тока пром. частоты 50 гц напряжением 25 кв. При работе на участках с 2 системами тока иногда используют Э. двойного питания. За рубежом работают Э. на этих же системах тока и напряжения, а также на более старых системах постоянного тока напряжением 1,5 кв и однофазного тока пониж. частоты 162/3 или 25 гц напряжением 11-16 кв. Для безотцепочной работы с экспрессами на жел. дорогах ряда стран Зап. Европы (Франция, Бельгия, ФРГ и др.), имеющих разные системы тока, эксплуатируются пасс. Э. на 4 системы питания: постоянный ток 1,5 и 3 кв, однофазный ток промышленной частоты 50 гц 25 кв и однофазный ток пониженной частоты 162/3гц 15 кв.

Э. состоит из механич. части, электрич. и пневматич. оборудования. К механич. части относятся кузов, в к-ром располагается б. ч. оборудования, ходовая (экипажная) часть и автосцепка. Обычно цельнометаллич. кузоз опирается на 2 или 3-осные тележки. Они состоят из стальных сварных, литых или брусковых рам, в к-рых размещены колёсные пары с буксами, имеют рессорное подвешивание, тормозную рычажную систему и тяговую передачу. На тележке установлены тяговые электродвигатели. На грузовых Э. применяется наиболее простое по конструкции тяговой передачи опорно-осевое подвешивание тяговых электродвигателей, при к-ром возникает повышенное воздействие колёсных пар на путь. У скоростных Э., в т. ч. на разрабатываемых грузовых, рассчитанных на скорости до 120 км/ч и выше, применяют опорно-рамное подвешивание, обеспечивающее меньшее воздействие на путь из-за крепления тяговых электродвигателей на зарессоренной раме тележки. Вращающий момент от электродвигателя на ось колёсной пары при этом передаётся через более сложную тяговую передачу. Иногда применяется передача вращающего момента от тягового двигателя повышенной мощности не на 1, а на 2 или 3 колёсные пары тележки.

К электрич. оборудованию относятся тяговые электродвигатели, как правило, постоянного тока, вспомогательные машины (напр., двигатель компрессора), преобразователи напряжения для питания вспомогат. низковольтных приборов, пускорегулирующие и защитные аппараты, токосъёмник и др., а на Э. переменного тока - тяговый трансформатор и выпрямители для питания тяговых электродвигателей. Пневматич. оборудование включает компрессор, резервуары для хранения сжатого воздуха, тормозные приборы и др. Сжатый воздух используется для питания рабочих приводов системы управления и тормозной системы поезда.

Скорость движения Э. регулируют изменением напряжения на тяговых электродвигателях и воздействием на их магнитный поток. На Э. постоянного тока в начале движения все электродвигатели включены последовательно, а затем по мере роста скорости - последовательно-параллельно и далее - параллельно, с включением в каждом случае в цепь двигателей пускового реостата, к-рый в начале имеет макс, сопротивление, а для плавного набора скорости постепенно выводится. На Э. переменного тока различают системы низковольтного и высоковольтного регулирования напряжения. При низковольтной системе, наиболее распространённой на сов. Э., напряжение регулируют изменением числа витков вторичной обмотки тягового (понижающего) трансформатора. При высоковольтной системе, основной за рубежом, в т. ч. на Э. серии ЧС, меняют число витков со стороны первичной обмотки этого трансформатора. Большинство эксплуатируемых Э. оборудуется устройствами для торможения электрического (реостатного или рекуперативного).

Основные данные наиболее распространённых в СССР магистральных Э. приведены в табл.

Характеристики наиболее распространённых в СССР электровозов (1977)
 

Серия

Система тока

Род службы

Число колёсных пар

Масса, т

Мощность двигателей, квт

Сила ТЯГИ, т

Максимальная cкорость2, км/ч

ВЛ80К)

Переменный

 

 

 

 

 

 

ВЛ80Т

Однофазный

Грузовой

8

184

6520

45,1

110

ВЛ80Р'

50 гц, 25 кв

 

 

 

 

 

 

ВЛ60К

То же

То же

6

138

4450

31,8

100

ЧС4Т

 

Пассажирский

6

126

5100

17,4

160

ЧС4

"

То же

6

126

5100

17.4

160

ВЛ10

Постоянный

Грузовой

8

184

5200

39,5

100

 

3 кв

 

 

 

 

 

 

ВЛ8

То же

То же

8

180

4200

35,2

100

ВЛ22М

"

"

6

132

2400

23,9

75

ЧС2Т

"

Пассажирский

6

126

4620

19,4

160

ЧС2

"

То же

6

123

4200

16,5

160

1 Максимально допустимая конструкцией двигателей, условиями охлаждения и т. п., при работе в течение 1 ч (т. н. часовой режим). 2 Допустимая конструкцией электровоза при эксплуатации.

Э. серии ВЛ10, ВЛ8 и часть Э. ВЛ22М оборудованы рекуперативным торможением. У Э. остальных серий индекс Т. характеризует реостатное торможение; индекс Р - рекуперативное; индекс К обозначает кремниевые полупроводниковые выпрямители.

Э. ВЛ80 является самым мощным грузовым Э. в мире, а Э. ЧС4Т и ЧС4 - самыми мощными пассажирскими Э.

Э. всех серий ВЛ (Владимир Ленин) построены в СССР. Э. серии ЧС поставляются заводами ЧССР.

В 1977 в СССР испытывался пасс. 8-осный Э. ЧС 200 мощностью 8400 квт с макс, эксплуатац. скоростью 200 км/ч. В 1978 испытывались грузовые 8-осные Э. однофазного тока повышенной мощности с бесколлекторными вентильными и асинхронными тяговыми электродвигателями, имеющими для регулирования скорости преобразователи на тиристо-рах.

Лит.: Быстрицкий X. Я., Дубровский 3. М., Ребрик Б. Н., Устройство и работа электровозов переменного тока, М., 1973; Устройство и ремонт электровозов постоянного тока, М., 1977.

ЭЛЕКТРОВООРУЖЁННОСТЬ ТРУДА, показатель, характеризующий обеспеченность труда электрич. энергией; составная часть энерговооружённости труда. Повышение Э. т.- важное условие научно-технического прогресса и роста производительности общественного труда.

Различают Э. т. и электровооружённость рабочих. Коэфф. Э. т. исчисляется делением количества электрич. энергии, потреблённой на произ-ве, на число фактически отработанных человеко-часов. Электровооружённость рабочих характеризуется мощностью электропривода в кет (см. Энергетическое хозяйство предприятия), приходящейся на 1 рабочего; коэфф. электровооружённости рабочих выражается отношением мощности электромоторов и электрич. аппаратов к числу рабочих, занятых в наиболее заполненную смену.

Сопоставление коэфф. электровооружённости и коэфф. энерговооружённости характеризует уровень электрификации произ-ва. Если на конец года на предприятии коэфф. электровооружённости рабочих 2,0 (2 кет мощности электрич. привода на 1 рабочего в наиболее заполненную смену), а коэфф. энерговооружённости рабочих 2,5, то отношение 2,0 : 2,5 = 0,8 будет коэфф. электрификации труда по мощности; если за год коэфф. Э. т. 2,8, а коэфф. энерговооружённости труда 3,2, то отношение 2,8 : 3,2 = 0,875 будет коэфф. электрификации производств, процесса по мощности.

В статистич. публикациях Э. т. в пром-сти исчисляется как отношение количества электроэнергии, потреблённой за год, к среднесписочному числу рабочих, занятых на произ-ве. В 1976 по сравнению с 1913 произошло увеличение этого показателя в 56 раз. Коэфф. Э. т. в пром-сти растёт быстрее, чем производительность труда пром. рабочих. Сопоставление этих показателей выражает изменение электроёмкости продукции. Напр., потребление электроэнергии в пром-сти СССР составило в 1940 34,8 млрд. кет -ч, а в 1976 - 692,8 млрд. кет-ч, т. е. увеличилось в 19,9 раза. Объём пром. продукции за то же время увеличился в 17,7 раза; значит электроёмкость продукции возросла в 19,9:17,7 = = 1,12 раза.

Лит.: Родштейн А. А., Статистика энергетики в промышленности, М., 1956; Бакланов Г. И., Адамов В. Е., Устинов А. Н., Статистика промышленности, 3 изд., М., 1976. Г. И. Бакланов.

ЭЛЕКТРОВЫСАДОЧНАЯ МАШИНА, предназначена для получения на прутковых, профильных или трубных заготовках местных утолщений путём высадки. Высаживаемый участок заготовки нагревается при перемещении в индук-

торе; применяют также нагрев в проходной печи сопротивления и электроконтактный нагрев. Э. м. позволяют получать утолщения как на концах заготовки (законцовки), так и чередующиеся по её длине. Благодаря постепенной подаче заготовки в зону нагрева длина утолщения, полученного на Э. м., может быть значительно большей, чем при высадке на горизонтально-ковочных машинах. Э. м. применяют для произ-ва клапанов, труб с фланцами и сильфона-ми, ступенчатых валов, профилей с законцовками и др. деталей из сталей, титановых, алюминиевых, реже медных и никелевых сплавов. На Э. м. получают также заготовки переменного сечения для последующей штамповки.

ЭЛЕКТРОГИДРАВЛИЧЕСКИЙ ЭФФЕКТ, возникновение высокого давления в результате высоковольтного электрич. разряда между погружёнными в жидкость электродами. Давление до 3 кбар (300 Мн/м2) получают за счёт энергии импульсной ударной волны, распространяющейся вокруг канала разряда в рабочей среде, обычно в воде. Это давление используют для механич. воздействия на материалы при их обработке (напр., прессовании, штамповке, гибке), очистке, дроблении, размоле, перемешивании (напр., при приготовлении суспензий), распылении и др. Энергия, необходимая для электрич. разряда, накапливается в конденсаторе. В зависимости от назначения установок применяют конденсаторы ёмкостью от 10 до 1500 мкф, сила тока в импульсе 15-50 ка, длительность разряда 10-40 мксек, мгновенная мощность до 200 Мвт.

Лит.: Несветайлов Г. А., Серебряков Е. А., Теория и практика электрогидравлического эффекта, Минск, 1966; ПопиловЛ. Я., Электрофизическая и электрохимическая обработка материалов, М., 1969 Л. Ю. Максимов.

ЭЛЕКТРОГИДРАВЛИЧЕСКОЕ БУРЕНИЕ, основано на разрушении горной породы в заполненном водой забое скважины гидравлич. ударом, создаваемым разрядом тока высокого напряжения (до 200 кв). Впервые разработано в СССР Л. В. Юткиным в 50-х годах. Бур выполнен в виде невращающегося трубчатого и вращающегося центрального электродов, к к-рым с поверхности подаются с заданной частотой импульсы тока высокого напряжения. Происходит электрич. пробой межэлектродного промежутка по воде. Расширяющаяся газовая полость пробоя создаёт гидравлич. удар жидкости, в результате к-рого происходит разрушение породы на забое.

ЭЛЕКТРОГЛЯНЦЕВАТЕЛЬ, электрич. прибор для придания зеркального блеска поверхности позитива, выполненного на глянцевой фотобумаге. Осн. часть Э.- стальной полированный хромиров. барабан (или пластины), внутри к-рого помещён электрический нагреват. элемент (для ускорения сушки фотобумаги). Поверхность фотобумаги, прикатанной (напр., с помощью резинового валика) фотографич. слоем к барабану (пластине), после высыхания приобретает зеркальный блеск.

ЭЛЕКТРОГОРСК(до1946 -нос. Электропередача), город в Павлово-По-садском р-не Моск. обл. РСФСР, в 75 км к В. от Москвы. Соединён ж.-д. веткой со станцией Павлово-Посад (на линии Москва - Орехово-Зуево). Возник в связи со строительством (1912-14) электростанции на торфе - ГРЭС им. Р.Э. Классона. Торфопредприятие. Мебельный комбинат, з-ды: авторем., 2 механич. по ремонту электромеханич. оборудования, асфальтобетонный.

ЭЛЕКТРОГРАВИМЕТРИЯ, один из электрохимических методов анализа.

ЭЛЕКТРОГРАВИРОВАЛЬНЫЙ АППАРАТ, электронно-гравировальный автомат, электронно-механич. устройство для автоматич. изготовления клише однокрасочной или цветной печати. Создан в нач. 30-х гг. (Хоуэй, США, 1932, Н. П. Толмачёв, СССР, 1934). Принцип действия Э. а. основан на последоват. построчной развёртке (сканировании) иллюстрац. оригинала и преобразовании отражённой от него световой энергии в электрическую. Последняя используется для управления гравиров. устройством, к-рое имеет резец, создающий на формном материале (металле или пластмассе) необходимые углубления (пробельные элементы клише). Глубина и площадь пробельных элементов обратно пропорциональна тональности оригинала (насыщенности цветом), а их количество, приходящееся на 1 см2клише, составляет от 400 до 3600 шт. и выше. Скорость гравирования до 12 м/мин. По сравнению с фотоцинко-графскими процессами (см. Цинкография) изготовление клише на Э. а. обеспечивает полную автоматизацию процесса, уменьшение производств, площади, снижение себестоимости продукции и улучшение условий труда работающих. Э. а. широко используются в типографиях и на полиграфич. комбинатах. С 60-х гг. выпускаются Э. а. и для изготовления форм глубокой печати на омеднённых цилиндрах, воспроизводящих не только иллюстрации, но и текст. Лит.: Рабинович А. Д., Духовный И. Я., Полиграфические электронные гравировальные машины, М., 1961; Далматова С. А., Технология электронно-гравировальных процессов, М., 1973; Грибков А. В., Розенфельд П. Я., Стереотипное и фотомеханическое оборудование, М., 1975. Н.Н.Полянский.

ЭЛЕКТРОГРАФИЧЕСКОЕ КОПИРОВАНИЕ, то же, что электрофотографическое копирование.

ЭЛЕКТРОГРАФИЯ (от электро... и ...графия), совокупность электрич. и магнитных способов воспроизведения красочных изображений на различных материалах. К Э. обычно относят электрофотографию, электрографическое копирование, магнитографию (ферромагнитографию) и др. Электрографич. способы получения изображений, используемые в полиграфич. производстве, отличаются относит, простотой изготовления печатных форм, но пока ещё уступают классич. полиграфич. способам по скорости и производительности печатного процесса и качеству воспроизведённого оригинала и поэтому применяются ограниченно: для получения небольшого количества копий оригинала, для изготовления малоформатных офсетных печатных форм при оперативном размножении документации небольшими тиражами.

ЭЛЕКТРОД (от электро... и греч. hodos - путь), конструктивный элемент электронного, ионного или электротехнич. прибора или технологич. установки, представляющий собой проводник определённой формы, посредством к-рого участок электрич. цепи, приходящийся на рабочую среду (вакуум в технич. смысле, газ, полупроводник, жидкость), соединяется с остальной частью этой цепи (образуемой проводами).

Э. электронного прибора (электронной лампы, электроннолучевого прибора, полупроводникового прибора и др.) обычно выполняют в виде пластинки, сетки, цилиндра и т. д. функции этих Э. весьма разнообразны. Например, такие Э., как катод, фотокатод, служат источниками электронов; сетки (управляющие, экранирующие, антидина-тронные) и Э. 'электронных пушек используются для создания внутри прибора электрич. полей, управляющих движением электронов и ионов в рабочей среде; анод является коллектором электронов.

ЭЛЕКТРОД сварочный, см. в ст. Сварочные материалы.

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (эдс), физ. величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положит, заряда вдоль контура. Если через ЕСТр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна E = ФEdl, где dl - элемент длины контура.

Потенц. силы электростатич. (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - нагреванием проводников. Сторонние силы приводят в движение заряж. частицы внутри источников тока: генераторов, гальванич. элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы - это силы со стороны вихревого электрич. поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванич. элементах и аккумуляторах - это хим. силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.

Лит.: Калашников С. Г., Электричество, М., 4 изд., 1977 (Общий курс физики); Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976. Г. Я. Мякишев.

ЭЛЕКТРОДЕТОНАТОР, устройство для возбуждения детонации заряда взрывчатого вещества с помощью электрич. тока. Состоит из капсюля-детонатора и электровоспламенителя, размещённых в одной гильзе. Для инициирования Э. в качестве источников тока используют взрывные машинки, реже силовую или осветит, сеть. Известны конструкции Э. с мостиком накаливания (распространены в СССР), токопроводящим воспламенит, составом и искровые. По времени срабатывания различают пром. Э. мгновенного, короткозамедленного и замедленнрго действия. В Э. мгновенного действия инициирование капсюля-детонатора осуществляется непосредственно от электровоспламенителя, в электродетонаторах короткозамедленного и замедленного действия - через замедляющий состав. По назначению и условиям применения Э. подразделяются на водостойкие и неводостойкие, предохранительные (для шахт, опасных по газу и пыли) и непредохранительные, нормальной и низкой чувствительности, антистатические, повышенной термоустойчивости (для взрывных работ в нефтяной пром-сти при темп-ре окружающей среды до 270 °С), сейсмические (для сейсморазведочных работ). Э. получили распространение при пром. взрывных работах.

Лит.: РоссиБ. Д., Поздняков 3. Г., Промышленные взрывчатые вещества и средства взрывания, М., 1971.

В. М. Комир.

ЭЛЕКТРОДИАГНОСТИКА (от элект-ро... и диагностика), метод исследования функций проводимости двигат. нервов и возбудимости мышц при помощи раздражения их электрич. током. Применяется для выявления заболеваний или травм периферич. нервов и мышц. Для Э. пользуются как постоянным, так и переменным током. На поверхности тела имеются определённые точки, к-рые соответствуют наиболее электрически возбудимым пунктам каждого нерва и мышцы; к ним прикрепляют активный электрод в виде стержня; пассивный электрод в виде широкой свинцовой пластины помещают в области грудины или поясницы исследуемого. Определяют порог возбудимости (по минимальной силе тока, способной вызвать видимое глазом сокращение мышцы) сначала на здоровой, затем на по-раж. стороне и устанавливают количеств, изменения. Отсутствие реакции мышцы на сильные раздражения говорит о гибели нерва или мышцы. По восстановлению возбудимости судят о регенерации нерва после травмы. Э.- метод раннего выявления тетании, миастении, миотонии и др. заболеваний. Как вид Э. можно рассматривать хронаксиметрию, при к-рой измерение электровозбудимости тканей проводят с учётом силы тока и длительности его действия (так, при полиомиелите наблюдается резкое удлинение времени для вызова ответной реакции мышцы на раздражение). Э. используется также для распознавания нек-рых ушных, глазных, внутр. и др. заболеваний.

Электроодонтодиагностикой наз. исследование чувствит. нервов зуба при помощи их раздражения электрич. током; используется в стоматологии для распознавания болезненных изменений пульпы или периодонта.

ЭЛЕКТРОДИАЛИЗ, см. в ст. Диализ.

ЭЛЕКТРОДИНАМИКА классическая, классич. (неквантовая) теория поведения электромагнитного поля, осуществляющего взаимодействие между электрическими зарядами. Осн. законы классич. Э. сформулированы в Максвелла уравнениях. Эти уравнения позволяют определить значения осн. характеристик электромагнитного поля - напряжённости электрич. поля Е и магнитной индукции В - в вакууме и в макроскопич. телах в зависимости от распределения в пространстве электрич. зарядов и токов.

Микроскопич. электромагнитное поле, создаваемое отд. заряженными частицами, в классич. Э. определяется Лоренца - Максвелла уравнениями, к-рые лежат в основе классич. статистич. теории электромагнитных процессов в макроскопич. телах; усреднение уравнений Лоренца - Максвелла приводит к уравнениям Максвелла.

Законы классич. Э. неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн, т. е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики.

Историю возникновения и развития классич. Э. см. в ст. Электричество.

Г. Я. Мякишев.

ЭЛЕКТРОДИНАМИКА ДВИЖУЩИХСЯ СРЕД, раздел электродинамики, в к-ром изучаются электромагнитные явления, в частности законы распространения электромагнитных волн, в движущихся средах. Э. д. с. включает также оптику движущихся сред, в к-рой исследуется распространение света в движущихся средах. Хотя экспериментальный материал по Э. д. с. накапливался в течение неск. столетий, полное его объяснение стало возможным только после появления теории относительности.

18 и 19 вв. ознаменовались бурным развитием ньютоновской механики. На её основе были объяснены не только механич. движение тел и динамика сплошных сред, но и, казалось бы, не связанные с механикой тепловые явления. У подавляющего большинства физиков возникла уверенность, что все явления в природе могут быть объяснены действием законов классич. механики. Это нашло своё выражение и в подходе к электромагнитным явлениям. Опыты по интерференции света с неопровержимостью указывали на то, что свет имеет волновую природу. Но из механики было известно, что для распространения волны необходима упругая среда. Поэтому считалось, что и для распространения световых волн также нужна упругая среда. Колебания этой светоносной среды, названной эфиром, и связывались со световыми волнами. Т. к. было известно, что свет распространяется и в пустоте, приходилось считать, что пустота тоже заполнена световым эфиром. Эфир наделялся весьма необычными свойствами: с одной стороны, он должен был обладать очень большой упругостью (поскольку скорость распространения волн тем больше, чем больше упругость среды, а скорость световых волн очень велика), с другой - не должен был оказывать никакого механич. сопротивления движущимся сквозь него телам (поскольку все тела движутся в пустоте без сопротивления).

Попытка объяснения электромагнитных явлений с помощью теории эфира неизбежно приводила к вопросу о том, как протекают электромагнитные явления в теле, движущемся через эфир. Осн. теории, созданные в кон. 19 в. для описания оптич. явлений в движущейся среде (теории Г. Герца и X. Лоренца), базировались на представлении об эфире. Однако они противоречили нек-рым известным к тому времени опытам.

Создание непротиворечивой Э. д. с стало возможным лишь после появлени спец. теории относительности А. Эйн штейна (1905), к-рая устранила эфи как светоносную среду и как преиму ществ. систему отсчёта. Понятия "покс ящаяся" и "движущаяся" среды поте ряли свой абс. характер и стали опреде ляться только выбором системы отсчёт (и связанным с ней "наблюдателем")

В 1908 Г. Минковский показал, чт Максвелла уравнения для покоящихс: сред в сочетании с принципом относитель ности Эйнштейна (см. Относительности принцип) однозначно определяют элек тромагнитное поле в движущейся среде Эти же уравнения могут быть получен! и др. путём - усреднением микроскопич уравнений электронной теории Лоренц (см. Лоренца - Максвелла уравнения с учётом того, что у всех частиц сред! имеется скорость упорядоченного дви жения.

Уравнения для полей в движущейся среде совпадают с уравнениями Максвел ла в покоящейся среде:
30-04-1.jpg

Здесь Е и Н - векторы напряжённосте! электрич. и магнитного полей, О и В - электрич. и магнитная индукции, р i j - плотности внешних зарядов и токов Эта система уравнений должна быть дополнена т. н. материальными уравнениями, связывающими напряжённости полей с индукциями. В покоящейся среде материальные уравненш имеют вид: D = zE, В = цН (1а), га s и д - диэлектрич. и магнитная проницаемости среды. Из вида этих соотношений в покоящейся среде однозначно еле дует их вид в среде, движущейся со скоростью V:
30-04-2.jpg

(квадратные скобки обозначают вектор ное произведение). Это т. н. материаль ные уравнения Минковского; при v=0 они переходят в уравнения (1а). Материальные уравнения (2), вытекающие из принципа относительности, в сочетании с уравнениями Максвелла (1) удовлетворительно объясняют результаты всех экспериментов по изучению электромагнитных явлений в движущихся средах. Ниже рассмотрены нек-рые из следствий теории Э. д. с.

Распространение электромагнитны} волн в движущейся среде. Пусть в среде движущейся со скоростью V, распространяется электромагнитная волна
30-04-3.jpg

Здесь Ео и Но - амплитуды электрич. i магнитного полей, k - волновой вектор со - круговая частота волны, г, t - координата и время. Из уравнений (1) - (3 вытекает, что волновой вектор и частоте в движущейся среде связаны соотноше нием
30-04-4.jpg

При v = 0 (для покоящейся среды) по лучаем К2 = ецсо22. В соотношение (4; входит угол в между направлением распространения волны (вектором k) и скоростью v (kv = kv cos в); поэтому условия распространения волны для разных направлений различны. При малых v, ограничиваясь величинами первого порядка по v/c, из (4) можно получить выражение для фазовой скорости vфаз волны, распространяющейся под углом V к. скорости среды:
30-04-5.jpg

направление фазовой скорости совпадает с направлением волнового вектора k. Эта формула была подтверждена в Физо опыте. Из (5), в частности, видно, что скорость света в движущейся среде не равна сумме скоростей света в неподвижной среде и самой среды.

Поляризация волны, т. е. направления векторов Еои Но, зависит от скорости среды: вектор Еаперпендикулярен не k, как в покоящейся среде, а вектору
30-04-6.jpg

представляющему собой линейную комбинацию скорости среды и волнового вектора; вектор Но не перпендикулярен k и Ео.

До сих пор предполагалось, что среда перемещается как целое равномерно и прямолинейно. Если скорость среды зависит от координат и времени, напр, если среда вращается, то методы спец. теории относительности становятся недостаточными для определения электромагнитного поля в этом случае. Вид уравнений поля может быть получен с помощью общей теории относительности. (При малых угловых скоростях вращения применима спец. теория относительности.)

Отражение и преломление света на движущихся границах раздела. Если электромагнитная волна падает на движущуюся границу раздела двух сред, то, как и в случае покоящейся границы, волна частично отражается, а частично проходит через границу. Однако движение границы приводит к ряду новых физ. эффектов. Так, оказывается, что угол падения не равен углу отражения, а частоты всех трёх волн - падающей, отражённой и преломлённой - различны. Имеются и др. отличия; напр., при нек-рых скоростях границы может отсутствовать отражённая волна, но зато имеются две преломлённые с разными частотами.

Рассмотрим простейший пример - отражение света от движущегося в пустоте зеркала (Эйнштейн, 1905). В этом случае прошедшая волна отсутствует, имеются лишь падающая и отражённая волны (рис. 1). Если скорость v зеркала направлена по нормали к его плоскости, а волна падает на зеркало под углом a1 к нормали, то угол отражения а2 след, образом выражается через угол падения:
30-04-7.jpg

где b = v/c (предполагается, что зеркало движется навстречу падающей волне). При b = 0 (зеркало покоится) получим cos a1 = cos а2, т. е. равенство углов падения и отражения. Напротив, если скорость зеркала стремится к скорости света, то из (7) следует, что при любом угле падения угол отражения стремится к нулю, т. е. даже при скользящем падении отражённая волна уходит от зеркала по нормали. Частота отражённой волны связана с частотой падающей волны соотношением:
30-04-8.jpg

Если волна падает на движущееся зеркало по нормали, из (8) получается
30-04-9.jpg

Если скорость зеркала близка к скорости света, частота отражённой волны во много раз больше частоты падающей.

Движущееся зеркало - один из примеров движущейся границы раздела. В общем случае граница раздела не является идеально отражающей, поэтому кроме падающей и отражённой имеется преломлённая волна. Помимо этого, и граница раздела, и среды по обе стороны от неё могут двигаться с различными скоростями. Если скорости сред по обе стороны от границы параллельны плоскости раздела, отражение волны от такой границы сопровождается поворотом плоскости поляризации, причём угол поворота пропорционален относит, скорости граничащих сред.

Для определения отражённой и преломлённой волн необходимо знать условия, к-рым удовлетворяют поля на границе раздела. В системе отсчёта, в к-рой граница раздела покоится, граничные условия оказываются такими же, как в электродинамике неподвижных тел.

По изменению частоты при отражении волны от движущейся границы может быть определена скорость границы. Было также предложено использовать этот эффект для умножения частоты электромагнитных волн; при этом в качестве отражающих тел предлагалось применять пучки ускоренной плазмы. Эксперимент подтвердил такую возможность, однако достигнутая эффективность преобразования частот пока невелика.

Излучение электромагнитных воли в движущейся среде. Источниками излучения в движущейся среде, как и в покоящейся, являются электрич. заряды и токи. Однако характер распространения электромагнитных волн от источника, расположенного в движущейся среде, существенно отличается от того, что имеет место в случае покоящейся среды.

Пусть в нек-рой малой области в движущейся среде расположен источник и время излучения мало. Если бы среда покоилась, то поле излучения расходилось бы от источника во все стороны с одинаковой скоростью, равной скорости света, т. е. всё поле излучения было бы сосредоточено вблизи от сферич. поверхности, расширяющейся со скоростью света. Движение среды приводит к тому, что скорость света в разных направлениях оказывается различной [см. формулу (5)]. Поэтому поверхность, на к-рой поле излучения отлично от нуля, уже не является сферой. Расчёт показывает, что эта поверхность имеет вид эллипсоида вращения с осью симметрии, направленной по скорости движения среды. Полуоси эллипса линейно растут со временем, а центр эллиптич. оболочки перемещается параллельно скорости среды. Т. о., оболочка, на к-рой сосредоточено излучение, одновременно расширяется и "сносится по течению" в движущейся среде ("увлекается" средой). Если скорость перемещения среды сравнительно невелика, то источник излучения находится внутри этой оболочки (рис, 2).

Если же скорость движения среды превышает фазовую скорость света, то оболочку "сдувает" настолько сильно, что она вся оказывается "ниже по течению", и источник излучения находится вне этой оболочки (рис. 3).

Прохождение заряженной частицы через движущуюся среду. При рассмотрении излучения в движущейся среде ранее предполагалось, что источник излучения покоится. Если источник движется, то его поле излучения, как и в покоящейся среде, определяется интерференцией волн, испущенных источником в каждой точке своего пути. Отличие от случая покоящейся изотропной среды заключается в том, что из-за эффекта увлечения в движущейся среде скорость волн в разных направлениях различна (см. рис. 2 и 3).

Особенность излучения движущегося источника в движущейся среде можно понять на примере Черенкова - Вавилова излучения. Пусть в среде, движущейся со скоростью V, перемещается с постоянной скоростью и точечная заряженная частица. Для простоты будем считать, что и и v направлены по одной прямой. В случае покоящейся среды (v = 0) частица может стать источником излучения, если её скорость достаточно велика (превышает фазовую скорость

света в среде
30-04-10.jpg

Возникающее излучение, наз. излучением Черенкова - Вавилова, уносит энергию от движущейся частицы, которая, т. о., замедляется. В движущейся среде источником излучения Черенкова - Вавилова может быть медленная или даже покоящаяся заряженная частица. Если частица покоится, а скорость движения среды превышает фазовую скорость света, возникает характерное волновое поле, представляющее собой излучение Черенкова - Вавилова в этом случае. При этом на частицу - источник излучения - действует ускоряющая сила в направлении движения среды.

Рассмотренный пример показывает, что в движущейся среде характер взаимодействия заряженной частицы со средой меняется. В зависимости от скоростей частицы и среды потери энергии частицы могут иметь различную величину и даже менять знак, что соответствует уже не замедлению, а ускорению частицы средой.

После того как стали получать (с помощью сильноточных и плазменных ускорителей) пучки заряженных частиц большой плотности, движущиеся с релятивистской скоростью, интерес к Э. д. с. возрос. Плотные пучки во многих отношениях ведут себя как макроскопич. движущаяся среда. В связи с применением таких пучков появились новые возможности не только в Э. д. с. вообще, но также в изучении эффектов выше 1-го порядка по vjc, т. е. эффектов, в к-рых величина v/c уже не мала по сравнению с единицей.

Лит.: Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976; его же, Собр. научных трудов, т. 1, М., 1975; Б е к к е р Р., Электронная теория, пер. с нем., Л.- М., 1936; БолотовскийБ. М., Столяров С. Н., Современное состояние электродинамики движущихся сред (безграничные среды), в кн.: Эйнштейновский сборник. 1974, М., 1976. Б. М. Болотовскый.

ЭЛЕКТРОДИНАМИКА КВАНТОВАЯ, см. Квантовая электродинамика.

ЭЛЕКТРОДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ АППАРАТА, способность электрического аппарата работать без повреждений, выдерживая электродина-мич. усилия, возникающие в нём в результате взаимодействия магнитных полей, создаваемых токопроводящими частями аппарата, и определяемых исходя из самых тяжёлых условий, возможных при его эксплуатации (обычно при коротком замыкании). Э. у. а. задаётся (и указывается в паспорте прибора) либо как максимально допустимая амплитуда сквозного тока, проходящего через аппарат, либо как наибольшее допустимое отношение этого тока к номинальному току аппарата, либо в виде максимально допустимого механич. усилия в аппарате при коротком замыкании.

Лит.: ХолявскийГ. Б., Расчет электродинамических усилий в электрических аппаратах, М.- Л., 1962; Тамм И. Е., Основы теории электричества, 8 изд., М., 1966. Р. Р. Мамашин.

ЭЛЕКТРОДИНАМИЧЕСКИЙ ГРОМКОГОВОРИТЕЛЬ, громкоговоритель, в к-ром для преобразования электрич. колебаний звуковых частот в механические используют взаимодействие магнитного поля постоянного магнита с током в подвижной катушке, подключённой к источнику электрич. колебаний. Катушка (располагаемая в зазоре магнита) и жёстко связанная с ней диафрагма (см. рис.) вместе с магнитной системой образуют т. н. головку Э. г. Взаимодействие тока с магнитным полем вызывает механич. колебания диафрагмы, сопровождающиеся излучением звуковых волн либо непосредственно (в Э. г. прямого излучения), либо через рупор (в рупорных громкоговорителях). Для обеспечения высокого качества звучания и эксплуатац. надёжности Э. г. головку помещают в корпус из дерева, пластмассы или металла. Э. г. используют в радиоприёмниках, электрофонах, магнитофонах и т. п. Мощность Э. г. зависит от его назначения и лежит в пределах от 0,05 до 100 ва; кпд Э. г. прямого излучения обычно не более 1-3%. Э. г. бывают узкополосные (обеспечивают воспроизведение в сравнительно узком интервале частот, напр. 300- 5000 гц) и широкополосные (напр., 40- 15 000 гц). Широкополосные головки сложны в изготовлении, поэтому в Э. г. часто применяют системы, состоящие из неск. головок, каждая из к-рых воспроизводит звук в определённом участке частотного диапазона.

Лит.: Римский-Корсаков А. В., Электроакустика, М., 1973; Э ф р у с с и М. М., Громкоговорители и их применение, 2 изд., М., 1976.

Н. Т. Молодая, Л. 3. Папернов.

ЭЛЕКТРОДИНАМИЧЕСКИЙ МИКРОФОН, микрофон, в к-ром для преобразования звуковых квлебаний в электрич. используют явление возникновения эдс индукции (см. Индукция электромагнитная) в металлич. проводнике, совершающем под действием звуковых волн вынужденные колебания в поле постоянного магнита.

ЭЛЕКТРОДИНАМИЧЕСКИЙ ПРИБОР, измерительный прибор, принцип действия к-рого основан на механич. взаимодействии двух проводников при протекании по ним электрич. тока. Э. п. состоит из измерительного преобразователя, преобразующего измеряемую величину в переменный или постоянный ток, и измерит, механизма электродинамич. системы (рис.). Наиболее распространены Э. п. с неподвижной катушкой, внутри к-рой на оси со стрелкой расположена подвижная катушка. Вращающий момент на оси возникает в результате взаимодействия токов в обмотках катушек 1 и 2и пропорционален произведению действующих значений этих токов. Уравновешивающий момент создаёт пружина, с к-рой связана ось. При равенстве моментов стрелка останавливается.

Э. п.- наиболее точные электроизме-рит. приборы, применяемые для определения действующих значений тока и напряжения в цепях переменного и постоянного тока. При последоват. соединении обмоток катушек угол поворота стрелки пропорционален квадрату измеряемой величины. Такое включение обмоток применяется в Э. п. для измерения напряжения и силы тока (вольтметры и амперметры). Электродинамич. измерит, механизмы используют также для измерения мощности (ваттметры). При этом через неподвижную катушку пропускают ток, пропорциональный току, а через подвижную - ток, пропорциональный напряжению в измеряемой цепи. Показания прибора пропорциональны активному или реактивному значению электрич. мощности. В случае исполнения электродинамич. механизмов в виде логометров их применяют как частотомеры, фазометры и фарадометры. Э. п. изготовляют гл. обр. переносными приборами высокой точности - классов 0,1; 0,2; 0,5. Разновидность Э. п.- ф е р-родинамический прибор, в к-ром для усиления магнитного поля неподвижной катушки применяют магнитопровод из ферромагнитного материала. Такие приборы предназначаются для работы в условиях вибрации, тряски и ударов. Класс точности ферродинамич. приборов 1,5 и 2,5.

Лит.: Электрические измерения, под ред. Е. Г. Шрамкова, М., 1972.

Н. Н. Вострокнутов.

ЭЛЕКТРОДНЫЕ ПРОЦЕССЫ, элект-рохимич. превращения на границе электрод/электролит, при к-рых через эту границу происходит перенос заряда, проходит электрич. ток. В зависимости от направления перехода электронов (с электрода на вещество или наоборот) различают катодные и анодные Э. п., приводящие соответственно к восстановлению и окислению веществ. Пространственное разделение процессов окисления и восстановления используется в химических источниках тока и при электролизе. Точной мерой скорости Э. п. служит плотность тока (а/см2). Особенностью Э. п. является зависимость их скорости от электродного потенциала, а также от строения двойного электрического слоя и наличия адсорбированных частиц на межфазной границе. Скорость Э. п. увеличивается по мере возрастания перенапряжения. При равновесном потенциале достигается динамич. равновесие, при к-ром ток через электрод не протекает, однако через границу фаз идёт непрерывный обмен носителями зарядов - ионами или электронами (т. н. ток обмена - один из основных кине-тич. параметров Э. п.). Скорость Э. п. может меняться в очень широких пределах в зависимости от природы электрода. Так, ток обмена при электрохимич. процессе выделения водорода из водных растворов кислот варьирует от 10-12 а/см2 для ртутного электрода до 0,1 а/см2для платинового. На скорость Э. п. влияют концентрация реагирующих частиц и темп-ра.

Простейшие Э. п.- реакции переноса электрона типа Fe2+ = Fe3+ + e. Перенос электронов может сопровождаться разрывом хим. связей и переходом атомов от исходного вещества к продукту реакции, напр. C6H5NO2 + 6H++ 6е= = С6Н5NH2+ 2Н2О. Более сложные Э. п. сопровождаются образованием новой фазы. К ним относятся катодное осаждение и анодное растворение металлов, напр. Ag+ + е=> Ag, а также выделение и ионизация газов, напр. 2Н+ + + 2е = Н2. Одной из стадий Э. п. всегда является стадия разряда-ионизации, т. е. переход заряженной частицы через границу фаз. Эта стадия - электрохимия, элементарный акт суммарного процесса. Э. п. включают как стадии доставки реагирующего вещества к поверхности электрода, так и отвода продуктов реакции в объём раствора. Э. п. могут включать также хим. стадии, предшествующие стадии разряда-ионизации или протекающие после неё. Широко применяемые в технике электродные процессы описаны в статьях Гальванотехника, Электрометаллургия, Электрофизические и электрохимические методы обработки, Анодирование. В. В. Лосев

ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, разность электрич. потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Возникновение Э. п. обусловливается переносом заряженных частиц через границу раздела фаз, специфич. адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя)- ориентац. адсорбцией их. Величина Э. п. в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетич. закономерностей электродных реакций на границе раздела фаз. Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциалов между точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически. Практич. значение имеют относительные Э. п., обычно наз. просто Э. п., представляющие собой разность Э. п. рассматриваемого электрода и электрода сравнения - чаще всего нормального водородного электрода, Э. п. к-рого условно принимается равным нулю.

При электрохимич. равновесии на электроде величина Э. п. (?) может быть выражена через изменение гиббсовой энергии (&G) реакции: Е = -&G/zF, где z - число электронов, участвующих в электрохимич. процессе, F - Фарадея число. Э. п. в этом случае зависит от активности (а) участвующих в реакции веществ (потенциалопределяющих веществ). Для электродов Ме/Меn+Е = = E0 + (RT/zF)ln aмеn++, где R - газовая постоянная, Т - темп-pa, Eо - нормальный потенциал. Для окисли-тельно-восстановит. систем с инертным электродом, у к-рых все компоненты электрохимич. реакции находятся в растворе, Э. п. (окислительно-восстановительный потенциал) определяется активностями как окисленной ак), так и восстановленной (ав) форм вещества:
30-04-11.jpg

где v - стехиометрический коэффициент.

В случае, когда на электроде возможно одновременное протекание более одной электродной реакции, используется понятие стационарного Э. п. При пропускании электрич. тока измеренный Э. п. будет отличаться от равновесного на величину поляризации (см. Поляризация электрохимическая). Лит. см. при ст. Электрохимия.

В. В. Городецкий.

ЭЛЕКТРОДОМЕННАЯ ПЕЧЬ, электрич. рудовосстановительная шахтная печь для выплавки чугуна из железных руд. Состоит из шахты с верхней загрузкой шихтовых материалов и расположенного под ней широкого горна. Переменный ток подаётся на наклонные (реже горизонтальные) угольные электроды. Необходимое для технологич. процесса тепло выделяется в горне в результате горения электрич. дуг, а также нагревания шихты и шлака при прохождении через них электрич. тока. Конструкция Э. п. разработана в 1898 (Э. Стассано в Италии). Первая пром. Э. п. была введена в эксплуатацию в 1908 в Швеции (з-д Домнарвет). В 1-й четв. 20 в. число Э. п. достигло неск. десятков (в основном в Швеции и Норвегии, в меньшей мере в Италии и Японии). Применение Э. п. было экономически оправданным в тех районах, где мало коксующихся углей и есть дешёвая электроэнергия. Но из-за недостаточно высокой производительности и сложности эксплуатации, а также в связи с появлением и развитием мощных закрытых дуговых печей число работающих Э. п. резко сократилось и к сер. 70-х гг. их эксплуатация практически прекратилась.

ЭЛЕКТРОДЫ гальванических цепей, гальванические электроды, металлические, окис-ные или др. электрич. проводники, находящиеся в контакте с ионным проводником (электролитом - раствором или расплавом). Важнейшей характеристикой таких Э. является электродный потенциал, устанавливающийся на границе электрод/электролит.

По применению различают электроды сравнения, индикаторные Э. и др. Системы двух различных Э. могут использоваться как химические источники тока, а при пропускании через такие системы постоянного тока они служат электролизёрами.

ЭЛЕКТРОДЫ СРАВНЕНИЯ, гальва-нич. электроды, применяемые для измерения электродных потенциалов. Обычно измеряют разность потенциалов между исследуемым электродом и выбранным Э. с., имеющим известный потенциал относительно условно принятого за нуль потенциала нормального водородного электрода (НВЭ) (более строго: за нуль принят потенциал стандартного водородного электрода, отличающегося от НВЭ тем, что для него равна единице не концентрация, а активность ионов Н+). Измеренную разность принимают за потенциал исследуемого электрода, указывая, относительно какого Э. с. он измерен. В качестве Э. с. выбирают электроды, потенциалы к-рых характеризуются хорошей стабильностью и воспроизводимостью. Э. с. различаются по природе протекающих на них электрохимич. реакций. Эти реакции должны быть высокообратимыми (чтобы исключить изменения потенциала Э. с. при прохождении через него небольшого тока).

Наиболее употребительны Э. с.: каломельные (Hg/Hg2Cl2/KCl или НС1), хлор-серебряные (Ag/AgCl/KCl или НС1), ртутносульфатныг (Hg/HgSO4/H2SO4), ртутноокисные (Hg/HgO/KOH), хингид-ронные (Pt/гидрохинон, хинон/HCl). Потенциалы Э. с. зависят от концентрации потенциалопределяющих ионов (напр., для каломельных Э. с.- от концентрации ионов С1~: потенциалы 0,1 н., 1 н. и насыщенного каломельных Э. с. при 25 °С равны соответственно 333, 280 и 241 мв относительно НВЭ). Изменение потенциалов (ф) Э. с. с темп-рой (t, °C) характеризуется температурными коэффициентами, различными для разных Э. с. Для 1 н. каломельного Э. с., напр., Ф = + 280 - 0,24 (t - 25) мв относительно НВЭ при той же темп-ре (по определению Фнвэ = 0 при всех темп-рах). Выбор Э. с. зависит от условий измерений. В неводных средах можно применять и водный Э. с., но учитывать в этом случае диффузионные потенциалы на границе между водным и неводным растворами. В расплавах используют металлические Э. с., потенциалы которых в данном расплаве не меняются во времени.

Лит.: Антропов Л. И., Теоретическая электрохимия, Зизд.. М., 1975; Reference electrodes, ed. by D. J. G. Ives, G. J. Janz, N. Y.- L., 1961; Б а т л е р Д ж., Электроды сравнения в апротонных органических растворителях, в кн.: Электрохимия метал!ов в неводных растворах, пер. с англ., М., 1974. Г. М. Фло&ианович.

ЭЛЕКТРОЖЕЗЛОВАЯ СИСТЕМА, см. Жезловая система.

ЭЛЕКТРОИЗГОРОДЬ, электропастух, тонкая стальная проволока, подвешенная на кольях и периодически получающая кратковрем. маломощные электрич. импульсы. Используется для ограничения пастбищных участков при загонной системе пастьбы скота. Прикоснувшись к проволоке, животное замыкает цепь тока и получает ощущение кратковременного удара. Вскоре у животных вырабатывается условный рефлекс боязни проволоки. Источник питания Э.- аккумуляторные батареи, дающие напряжение не более 6 в. В зависимости от вида скота проволоку навешивают на вые. 40- 80 см.

ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ КОМБИНИРОВАННЫЙ ПРИБОР, измерительный прибор, в к-ром для измерения (неодновременного) двух и более величин используется один измерит, механизм либо неск. различных измерит, преобразователей с общим отсчётным устройством. Шкалу или отсчётное устройство Э. к. п. градуируют в единицах тех величин, к-рые он измеряет. Наиболее широко используют приборы для измерения электрич. напряжения, силы переменного и постоянного тока - ампервольтметры; напряжения, силы переменного и постоянного тока и сопротивления - ампервольтомметры (авометры); индуктивности, напряжения постоянного тока, количества импульсов - универсальные цифровые Э. к. п.

ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАСЛА, высокоочищенные масла нефтяные, реже синтетич. и растит, масла, используемые для изоляции и охлаждения электоич. аппаратов и устройств: трансформаторов (см. Трансформаторные масла), конденсаторов, кабелей и др. Э. м. отличаются высокой глектрич. прочностью (до 25 Мв/м) и имеют электрич. сопротивление порядка 1010-1012 ом*см. В 70-е гг. 20 в. мировое произ-во нефтяных Э. м. составляет ок. 1 млн. т, а синтетических - ок. 50 тыс. m в год.

Лит.: К р е и н С. Э., К у л а к о в а Р. В., Нефтяные изоляционные масла, М.- Л., 1959; Липштейн Р. А., Шахнович М. И., Трансформаторное масло, 2 изд., М.. 1968; Ш а х н о в и ч М. И., Синтетические жидкости для электрических аппаратов, М., 1972.

ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, материалы, применяемые в электротехнич. и радиотехнич. устройствах для разделения токоведущих частей, имеющих разные потенциалы, для увеличения ёмкости конденсаторов, а также служащие теплопроводящей средой в электрич. машинах, аппаратах и т. п. В качестве Э. м. используют диэлектрики, к-рые по сравнению с проводниковыми материалами обладают значительно большим удельным объёмным электрич. сопротивлением PV = 109-1020ОМ'СМ {у проводников 10-6-Ю-4 ом *см). Осн. характеристики Э. м.: удельное объёмное и поверхностное сопротивления pvи ps, относительная диэлектрическая проницаемость Е, температурный коэфф. ди-электрич. проницаемости 1/е *de/dTzpad-1, угол диэлектрич. потерь 8, электрич. прочность Япр (напряжённость электрич. поля, при к-рой происходит пробой, см. Пробой диэлектриков). При оценке Э. м. учитывают также зависимость этих характеристик от частоты электрич. тока и величины напряжения. Э. м. можно классифицировать по неск. признакам: агрегатному состоянию, хим. составу, способам получения и т. д. В зависимости от агрегатного состояния различают твёрдые, жидкие и газообразные Э. м. Т в ё р д ы е Э. м. составляют наиболее обширную группу и в соответствии с физико-химич. свойствами, структурой, особенностями произ-ва делятся на ряд подгрупп, напр, слоистые пластики, бумаги и ткани, лакоткани, слюды и материалы на их основе, электрокерамич. и др. К этим же материалам условно можно отнести лаки, заливочные и пропиточные составы, к-рые, хотя и находятся в жидком состоянии, но используются в качестве Э. м. в затвердевшем состоянии. Электрич. прочность твёрдых Э. м. (при 20 °С и частоте электрич. тока 50 гц) лежит в пределах от 1 Мв/м (напр., для нек-рых материалов на основе смол) до 120 Мб/ж (напр., для полиэтилентере-фталата). (О применении и получении твёрдых Э. м. см. в ст. Изоляция электрическая, Изолятор, Лаки, Слюда, Стеклопластики, Пластические массы, Компаунды полимерные, Смолы синтетические.) Ж и д к и е Э. м.- электроизоляционные масла, в т. ч. нефтяные, растительные и синтетич. Отдельные виды жидких Э. м. отличаются друг от друга вязкостью и имеют различные по величине электрич. характеристики. Лучшими электрич. свойствами обладают конденсаторные и кабельные масла. Электрич. прочность жидких Э. м. при 20 °С и частоте 50 гц обычно находится в пределах 12-25 Мв/м, напр, для трансформаторных масел 15-20 Мв/м (см. также Жидкие диэлектрики). Существуют полужидкие Э. м.- вазелины. Газообразные Э. м.- воздух, элегаз (гексафто-рид серы), фреон-21 (дихлорфторметан). Воздух является естеств. изолятором (воздушные промежутки в электрич. машинах, аппаратах и т. п.), обладает электрич. прочностью ок. 3 Мв/м. Элегаз и фреон-21 имеют электрич. прочность ок. 7,5 Мв/м, применяются в качестве Э. м. в основном в кабелях и различных электрич. аппаратах.

По хим. составу различают органич, и неорганич. Э. м. Наиболее распространённые Э. м.- неорганич. (слюда, керамика и пр.). В качестве Э. м. используют природные (естественные) материалы и искусственные (синтетич.) материалы. Искусств. Э. м. можно создавать с заданным набором необходимых электрич. и физико-химич. свойств, поэтому такие Э. м. наиболее широко применяют в электротехнике и радиотехнике. В соответствии с электрич. свойствами молекул вещества различают полярные (диполь-ные) и неполярные (нейтральные) Э. м. К полярным Э. м. относятся бакелиты, совол, галовакс, поливинилхлорид, многие кремнийорганич. материалы; к неполярным - водород, бензол, четырёххлористый углерод, полистирол, парафин и др. Полярные Э. м. отличаются повышенной диэлектрич. проницаемостью и неск. повышенной электрич. проводимостью и гигроскопичностью.

Для твёрдых Э. м. большое значение имеют механич. свойства: прочность при растяжении и сжатии, при статич. и дина-мич. изгибе, твёрдость, обрабатываемость, а также тепловые свойства (теплостойкость и нагревостойкость), влагопроницаемость, гигроскопичность, искростойкость и др. Теплостойкость характеризует верхний предел темп-р, при к-рых Э. м. способны сохранять свои механич. и эксплуатац. свойства. Нагревостойкость Э. м.- способность выдерживать воздействие высоких темп-р (от 90 до 250 "С) без заметных изменений электрич. характеристик материала. В электромашиностроении принято деление Э. м. на 7 классов. Наиболее нагревостойкие Э. м.- неорганич. материалы (слюда, фарфор, стекло без связующих или с элементоор-ганич. связующими). Для хрупких материалов (стекло, фарфор) важна также способность выдерживать перепады темп-р. Осуществляя электрич. разделение проводников, Э. м. в то же время не должны препятствовать отводу тепла от обмоток, сердечников и др. элементов электрич. машин и установок. Поэтому важным свойством Э. м. является теплопроводность. Для повышения коэфф. теплопроводности в жидкие Э. м. добавляют минеральные наполнители. Большинство Э. м. в той или иной мере поглощают влагу (гигроскопичны). Для повышения влагонепроницаемости пористые Э. м. пропитывают маслами, синтетич. жидкостями, компаундами. К абсолютно влагостойким можно отнести лишь глазурованный фарфор, стекло и т. п.

Лит.: Электротехнический справочник, 5 изд., т. 1, М., 1974. А. И. Хоменко.

ЭЛЕКТРОИМПУЛЬСНАЯ ОБРАБОТКА, разновидность электроэрозионных методов обработки, основана на использовании сильноточных электрич. импульсов относительно большой длительности, следующих с малой (1-10) скважностью (подробнее см. в ст. Электрофизические и электрохимические методы обработки).

ЭЛЕКТРОИМПУЛЬСНОЕ БУРЕНИЕ, основано на разрушении горной породы мощным электрич. разрядом (пробоем) высокого напряжения (до 200 кв), происходящим в приповерхностной зоне забоя скважины, заполненной жидким диэлектриком (масло, дизельное топливо). Разработан в кон. 60-х гг. 20 в. в СССР (А. А. Воробьёв и др.). Бур выполнен в виде кольцевого зубчатого и центрального электродов. При бурении электроды прижимаются к забою, а центральный электрод вращается, обеспечивая создание последовательных электрич. импульсов-пробоев с определ. частотой по всей площади скважины. Горная порода разрушается за счёт напряжений, возникающих в ней при электрич. пробое. Удаление продуктов разрушения производится циркуляцией жидкого диэлектрика. Эффективность бурения не зависит от крепости пород и глубины скважины и определяется параметрами электрич. пробоя и условиями удаления продуктов разрушения. Скорость бурения до 6-10 м/ч. Область применения - нисходящие скважины в плотных горных породах, обладающих высоким электрич. сопротивлением и не поглощающих циркулирующий в скважине жидкий диэлектрик. Э. б. находится в стадии эксперимента и пром. проверки (1977). Б. Н. Кутузов.

ЭЛЕКТРОИМПУЛЬСНЫЙ СТАНОК, электроэрозионный станок, станок для размерной обработки то-копроводящих материалов импульсами дугового разряда. Используется в основном для обработки деталей из твёрдых сплавов. Подробнее см. в ст. Электрофизические и электрохимические методы обработки.

ЭЛЕКТРОИНДУКЦИОННАЯ ДЕФЕКТОСКОПИЯ, электроиндуктивная дефектоскопия, см. в ст. Дефектоскопия.

ЭЛЕКТРОИНЕРЦИОННЫЕ ОПЫТЫ, опыты, доказавшие, что проводимость металлов обусловлена свободными электронами. Эти опыты были выполнены Л. И. Мандельштамом и Н. Д. Папа-лекси в 1912 (результаты опытов не были опубликованы) и амер. физиками Т. Стюартом и Р. Толменом в 1916. В Э. о. катушка большого диаметра с намотанным на неё металлич. проводом приводилась в быстрое вращение и затем резко тормозилась. При торможении катушки свободные заряды в проводнике продолжали нек-рое время двигаться по инерции. Вследствие движения зарядов относительно проводника в катушке возникал кратковременный электрич. ток. Этот ток регистрировался гальванометром, присоединённым к концам катушки с помощью скользящих контактов. Направление тока свидетельствовало о том, что этот ток обусловлен упорядоченным движением отрицательно заряженных частиц. Величина переносимого заряда, согласно расчётам, прямо пропорциональна отношению заряда к массе частиц, создающих ток. Измерения показали, что это отношение равно отношению заряда к массе электрона, полученному из др. опытов.

Лит.: Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики, т. 2).

ЭЛЕКТРОИНСТРУМЕНТ, ручные переносные машины с приводом от электродвигателя для механич. обработки материалов. Э. состоит обычно из корпуса и размещённого в нём электродвигателя, ротор к-рого соединён с рабочим шпинделем муфтой или редуктором; иногда удлинённый вал ротора Э. является одновременно и рабочим шпинделем. В нек-рых случаях (напр., электрорубанок) ротор обращённого электродвигателя (статор помещён внутри ротора) служит ножевым валом. Иногда вращат. движение передаётся от электродвигателя к рабочим элементам гибким валом. Э. снабжают рукоятками для переноски и направления инструмента во время работы. Для снижения веса Э. его корпус и нек-рые др. детали изготовляются пре-им. из лёгких сплавов. Мощность электродвигателя Э. обычно не превышает 0,4-1,0 кет. Э. предназначен гл. обр. для произ-ва мелких работ и применяется для механизации ручных операций при выполнении слесарных, монтажных, сборочных и отделочных работ, а также для обработки мест изделий, к к-рым нельзя подвести инструмент на стационарных станках.

Широко распространён Э. в металлообработке. Для механизации процесса рубки металлов применяются электрич. рубильные молотки, у к-рых вращение вала электродвигателя преобразуется в возврагно-посгупат. движение зубила или крейцмейселя, закреплённого на конце ударника. При резке металлов используются различные электрич. ножовки, дисковые пилы, при резке листовой стали толщиной до 3 мм - электрич. ножницы вибрационного типа, производительность к-рых достигает 3-6 м/мин. Они особенно удобны при резке по фигурному раскрою. При опиливании применяются передвижные опиловочные электрич. машины, а также электрич. напильники. Для сверления и развёртывания отверстий служат ручные сверлильные машины (электродрели) различных типов: лёгкие, средние и тяжёлые для обработки отверстий диам. соответственно до 9, 15 и 30 мм и угловые - для обработки отверстий в труднодоступных местах. Для механизации процесса нарезания резьбы применяются электрорезьбонарезатели и электросвер-лилки, оснащённые спец. насадками. При шабрении пользуются электромеханич. шаберами и электрич. шабровочными головками.

В деревообработке наиболее распространены электропилы, электрорубанки, электрофрезы, электросвёрла, электро-долбёжники, шлифовальные Э., сучко-резки, а также переносные паркетно-шлифовальные машины.

К Э. относятся также электрич. гайковёрты, лобзики, шуруповёрты, отбойные молотки, трамбовки, а также вспомо-гат. оборудование - заточные станки, точила и др. Нек-рые виды электрич. ручных машин комплектуются различным сменным режущим инструментом. См. также Ручные машины. IT. A. Щемелев.

ЭЛЕКТРОИСКРОВАЯ ОБРАБОТКА, разновидность электроэрозионных методов обработки. Основана на специфич. воздействии искрового разряда на материал. Позволяет получать изделия с высокой точностью и малой шероховатостью поверхности (подробнее см. в ст. Электрофизические и электрохимические методы обработки).

ЭЛЕКТРОКАПИЛЛЯРНЫЕ ЯВЛЕНИЯ, физич. явления, связанные с зависимостью поверхностного натяжения на границе раздела электрод - электролит от потенциала электрода. Э. я. обусловлены существованием на поверхности металла ионов, образующих поверхностный заряд е и обусловливающих существование двойного электрического слоя в отсутствии внешней эдс. Взаимное отталкивание одноимённо заряженных ионов вдоль поверхности раздела фаз компенсирует стягивающие молекулярные силы, вследствие чего поверхностное натяжение о- ниже, чем в случае незаряженной поверхности. Подвод извне зарядов, знак к-рых противоположен знаку е, снижает его значение (см. Поляризация электрохимическая) и повышает а. При полной компенсации стягивающих сил электростатическими а достигает максимума. Дальнейший подвод зарядов приводит к убыванию а вследствие возникновения и роста нового поверхностного заряда. Экспериментальная кривая зависимости о от потенциала электрода ф при постоянном составе раствора хорошо описывается ур-нием Липмана: Е = - da/d(p. Это ур-ние позволяет рассчитать значение Е и ёмкость двойного электрич. слоя.

На Э. я. влияет специфич. адсорбция ионов, особенно ионов поверхностно-активных веществ, что позволяет определять их поверхностную активность. Э. я. в расплавленных металлах используют для определения их адсорбционной способности (алюминий, галлий, кадмий, цинк и др.). Теорию Э. я. применяют для объяснения максимумов в полярографии.

К Э. я. относят также зависимость твёрдости, смачиваемости и коэфф. трения электрода от его потенциала.

Лит.: Кинетика электродных процессов, М., 1952; Дамаск пн Б. Б., П е т р и и О. А., Введение в электрохимическую кинетику, М., 1975. С. С. Духин.

ЭЛЕКТРОКАР (от электро... и англ, саг - тележка), самоходная безрельсовая колёсная тележка с электрич. приводом от аккумуляторной батареи. Э. могут быть с подъёмной и неподъёмной платформой, управляются сидящим или стоящим на машине водителем. Грузоподъёмность от 0,5 до 100 т и более. На рис. показан Э. грузоподъёмностью 2 т. Он состоит из шасси, аккумуляторной батареи, силового и коммутирующего электрооборудования с тяговыми электродвигателями. Скорость передвижения до 20 км/ч. Э. используются на пром. и торг, предприятиях, на транспорте (ж.-д. станциях, в мор., речных портах и аэропортах) и т. д. В СССР получили распространение Э. грузоподъёмностью 1, 2, 5 и 10 т. Достаточно большая скорость передвижения, хорошая манёвренность, удобство управления и отсутствие вредных выпускных газов делают Э. эффективным средством транспортировки грузов. Получают распространение Э. с программным управлением, в т. ч. блокируемые с ЭВМ, движущиеся без водителя по трассе, заданной уложенным в дорожном покрытии проводником электрич. тока или нанесённой на дорожное покрытие светлой полосой. В производств, практике часто вместо термина "Э." употребляют термин "электротележка".

Лит.: Т р о и н и н М. Ф., Ушаков Н. С., Электрокары и электропогрузчики, 3 изд., Л., 1973. Е. И. Сурин.

ЭЛЕКТРОКАРДИОГРАММА (от электро..., кардио... и ...грамма), записанная на бумаге кривая, отражающая колебания биопотенциалов работающего сердца. См. Электрокардиография.

ЭЛЕКТРОКАРДИОГРАФИЯ (от электро..., кардио... и ...графия), метод исследования сердечной мышцы путём регистрации биоэлектрических потенциалов работающего сердца. Сокращению сердца (систоле) предшествует возбуждение миокарда, сопровождающееся перемещением ионов через оболочку клетки миокарда, в результате к-рого изменяется разность потенциалов между наружной и внутр. поверхностями оболочки. Измерения при помощи микроэлектродов показывают, что изменение потенциалов составляет ок. 100 мв. В нормальных условиях отделы сердца человека охватываются возбуждением последовательно, поэтому на поверхности сердца регистрируется меняющаяся разность потенциалов между уже возбуждёнными и ещё не возбуждёнными участками. Благодаря электропроводности тканей организма, эти электрич. процессы можно уловить и при размещении электродов на поверхности тела, где изменение разности потенциалов достигает 1-3 мв.

Электрофизнол. исследования сердца в эксперименте проводились ещё в 19 в., однако внедрение метода в медицину началось после исследований Эйнтховена в 1903-24, к-рый применил малоинерционный струнный гальванометр, разработал обозначение элементов регистрируемой кривой, стандартную систему регистрации и осн. критерии оценки (см. также Кардиология). Высокая информативность и относительная технич. простота метода, его безопасность и отсутствие к.-л. неудобств для больного обеспечили широкое распространение Э. в медицине и физиологии. Осн. узлы совр.электрокардиографа - усилитель, гальванометр и регистрирующее устройство. При записи меняющейся картины распределения электрич. потенциалов на движущуюся бумагу получается кривая - электрокардиограмма (ЭКГ), с острыми и закруглёнными зубцами, повторяющимися во время каждой систолы. Зубцы принято обозначать лат. буквами Р, О, R, S, Т и U (рис.). Первый из них связан с деятельностью предсердий, остальные зубцы - с деятельностью желудочков сердца, форма зубцов в разных отведениях в общем различна. Сравнимость ЭКГ у разных лиц достигается стандартными условиями регистрации: способом наложения электродов на кожу конечностей и грудной клетки  (обычно используется 12 отведений), определёнными чувствительностью аппарата (1 лм==0,1 мв) и скоростью движения бумаги (25 или 50 мм в сек); исследуемый, как правило, находится в положении лёжа, в условиях покоя (при спец. показаниях - и после физич., лекарственной или др. нагрузки). При анализе ЭКГ оценивают наличие, величину, форму и ширину зубцов и интервалов между ними и на этом основании судят об особенностях электрич. процессов в сердце в целом и в нек-рой степени - об электрич. активности более огранич. участков сердечной мышцы.

В медицине Э. имеет наибольшее значение для распознавания нарушений сердечного ритма, а также для выявления инфаркта миокарда и нек-рых др. заболеваний. Однако изменения ЭКГ отражают лишь характер нарушения электрич. процессов и, как правило, не являются строго специфичными для определённой болезни. Изменения ЭКГ могут возникать не только в результате заболевания, но и под влиянием обычной дневной активности, приёма пищи, лекарственного лечения и др. причин. Поэтому диагноз ставится врачом не по ЭКГ, а по совокупности клинико-лабораторных признаков заболевания. Диагностич. возможности возрастают при сопоставлении ряда последовательно снятых ЭКГ (с интервалом в неск. дней или недель). Электрокардиограф используется также в кар-диомониторах (аппаратах круглосуточного автоматич. наблюдения за состоянием тяжелобольных) и для телемет-рич. контроля за состоянием работающего человека - в клинич., спортивной, кос-мич. медицине, что обеспечивается спец. способами наложения электродов и радиосвязью между гальванометром и регистрирующим устройством.

Биоэлектрич. активность сердца может быть зарегистрирована и др. способом. Разность потенциалов характеризуется определёнными для данного момента величиной и направлением, т. е. является вектором и может быть условно представлена стрелкой, занимающей определ. положение в пространстве. Характеристики этого вектора изменяются в течение сердечного цикла так, что его начальная точка остаётся неподвижной ("электрич. центр сердца"), а конечная - описывает сложную замкнутую кривую. В проекции на плоскость эта кривая имеет вид серии петель и наз. векторкардиограммой (ВКГ); приближённо она может быть построена графически на основании ЭКГ в разных отведениях, но её можно получить и непосредственно при помощи спец. аппарата - векторкардиографа, в к-ром регистрирующим устройством является катодно-лучевая трубка, а для отведения используются 2 пары электродов, размещённых на обследуемом в соответствующей плоскости. Меняя положение электродов, можно получить ВКГ в различных плоскостях и составить более полное пространств, представление о характере электрич. процессов. В нек-рых случаях векторкардиография дополняет Э. как диагностич. метод. Изучение электрофизиол. основ и клинич. применения Э. и векторкардиографии, совершенствование аппаратов и методов регистрации - предмет особого науч. раздела медицины - электрокардиологии.

В ветеринарии Э. применяется у крупных и мелких животных (в основном у лошадей, кр. рог. скота, собак) для диагностики изменений в сердце, возникающих в результате нек-рых незаразных или инфекц. болезней. С помощью Э. у животных определяют нарушения сердечного ритма, увеличение отделов сердца (предсердий, желудочков) и др. изменения в сердце. Э. позволяет контролировать действие на сердечную мышцу животного применяемых или испытываемых лекарственных средств.

Лит.: Исаков И. И., Кушаковскии М. С., Журавлева Н. Б., Клиническая электрокардиография. Л., 1974; Сумароков А. В., Михайлов А. А., Клиническая электрокардиография, 3 изд., М., 1975; Friedman Н. Н., Diagnostic electrocardiography and vectorcardiography, N. Y., 1971; Chung E. K., Electrocardiography. Practical applications with vectorial principles, N. Y.. 1974. А. А. Михайлов.

ЭЛЕКТРОКАТАЛИЗ, изменение скорости и селективности электрохимич. реакций, достигаемое в результате каталитич. действия электродов, на поверхности к-рых эти реакции протекают. Явление Э. впервые было обнаружено в нач. 20 в., когда в ряде работ была установлена зависимость скорости катодного выделения водорода от материала электрода. Широкое распространение Э. получил только после 1960, гл. обр. в связи с развитием исследований, связанных с проблемой топливных элементов. Э. тесно связан с адсорбцией реагирующих, промежуточных и конечных продуктов реакции. Осн. вопросом теории Э. является выяснение природы и предсказание каталитич. активности различных электродных материалов. Иногда понятие Э. связывают также с изучением адсорбционных и др. физико-химич. свойств поверхности различных катализаторов электрохимич. методами, а также с изучением кинетики и механизма электрохимич. стадий в каталитич. процессах в растворах - жидкофазного восстановления или окисления. В ряде случаев эти процессы сводятся к сопряжённым электрохимич. реакциям, напр, катодного восстановления гидрируемого вещества и анодного окисления водорода.

Э. имеет большое значение для повышения эффективности работы химических источников тока и электролизёров. Во мн. случаях в этих устройствах с целью ускорения электрохимич. процессов используются электроды, покрытые платиновыми катализаторами. Одна из практически важных задач исследований в области Э.- разработка менее дорогих и менее дефицитных катализаторов - металлич. и неметаллич. материалов с высокой электрокаталитич. активностью (в т. ч. окислов, органич. полупроводников и др.). В. С. Багоцкий.

ЭЛЕКТРОКАУСТИКА (от электро... и греч. kaustikos - жгучий), то же, что гальванокаустика.

ЭЛЕКТРОКИМОГРАФИЯ (от элект-ро..., греч. kyma - волна и ...графин), графич. метод исследования сердечнососудистой системы при помощи рентгенодиагностич. аппаратуры и электрокимографа (см. Кимограф). Предложена нем. врачом К. Хекманом в 1936. Рентгеновские лучи, пройдя через определённый участок тела исследуемого и щель спец. камеры, попадают на экран фотоэлемента. Возникающий в цепи фотоэлемента электрич. ток передаётся на электронный усилитель. Если в фотоэлемент попадают лучи, проходящие через пульсирующий контур сердца или сосуда, то возникающий то:с меняется соответственно пульсации исследуемого органа; изменения тока записываются в виде кривой - электрокимограммы. В случае, когда фотоэлемент расп. тожен непосредственно за пульсирующим органом, электрокимограмма отразит разницу в кровенаполнении этого органа во время систолы и диастолы. Отклонения формы электрокимограмм от характерных для определённых отделов сердца (рис.) и крупных сосудов, а также изменения протяжённости отд. отрезков кривой могут иметь диагностич. значение. Э. применяется гл. обр. для распознавания аневризм, нек-рых пороков сердца, перикардитов и др. заболеваний сердца и сосудов, а также в клинич. фармакологии и физиологии.

Лит.: Зарецкий В. В., Электрокимография, М., 1963; О р л о в В. Н., Электрокимография в клинике внутренних болезней, М., 1964. Л. Л. Орлов.

ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ, группа явлений, наблюдаемых в дисперсных системах и капиллярах и выражающихся либо в возникновении движения одной из фаз по отношению к другой под действием внешнего электрич. поля (электроосмос, электрофорез), либо в возникновении разности потенциалов в направлении относительного движения фаз, вызываемого меха-нич. силами (седиментационный потенциал, или эффект Дорна, потенциал течения). Э. я. обусловлены существованием на границе фаз избыточных зарядов, располагающихся в виде двух противоположно заряженных слоев, наз. двойным электрическим слоем. Внешнее электрич. поле, направленное вдоль границы фаз, вызывает смещение одного ионного слоя по отношению к другому, что приводит к относительному перемещению фаз, т. е. к электроосмосу или электрофорезу. Аналогичным образом при течении жидкости или оседании частиц дисперсной фазы наблюдаются явления, обратные электроосмосу и электрофорезу,- относительное движение ионных слоев и пространственное разделение зарядов (поляризация) в направлении движения фаз, т. е. возникновение соответственно потенциалов течения или седиментации. Любое из Э. я. может быть использовано для определения электрокинетического потенциала $. При этом учитывают, что поверхностная проводимость, обусловленная подвижными зарядами двойного электрич. слоя, превышает объёмную проводимость системы.

Теория Э. я., разработанная М. Смолуховским (1903), устанавливает линейную зависимость между количеств, характеристиками Э. я. и внешнего электрич. поля. В этой теории, однако, не учитывается отклонение двойного электрич. слоя от равновесия и возникновение у дисперсных частиц индуцированного дипольного момента. Для учёта этого явления необходимо исследовать Э. я. совм. с др. электроповерхностными явлениями.

Лит.: Д у х и н С. С., Электропроводность и электрокинетические свойства дисперсных систем, К., 1975; Д у х и н С. С., Дерягин Б. В., Электрофорез, М., 1976.

С. С. Духин.

ЭЛЕКТРОКИНЕТИЧЕСКИЙ ПОТЕНЦИАЛ, $-потенциал, дзета-потенциал, часть общего скачка потенциала на границе двух фаз, определяющая относительное перемещение этих фаз при электрокинетических явлениях. Общий скачок потенциала при пересечении межфазной границы в дисперсных системах обусловлен существованием двойного электрического слоя. Э. п.- перепад потенциала по той части диффузного слоя, в пределах к-рой жидкость может быть вовлечена в тангенциальное движение относительно межфазной поверхности при внешнем воздействии на систему. Под влиянием сильно адсорбирующихся на поверхности ионов или изменения рН жидкости может произойти перемена знака на противоположный ("перезарядка" поверхности). Э. п. в изо-электрической точке равен нулю.

ЭЛЕКТРОКОАГУЛЯЦИЯ (от электро... и коагуляция), образование агрегатов частиц дисперсной фазы под воздействием внешнего электрич. поля (см. также Коагуляция). Э. обусловлена тем, что внешнее электрич. поле деформирует (поляризует) двойной электрический слой, существующий вблизи поверхности частиц дисперсной фазы. См. также Диа-термокоагуляция.

ЭЛЕКТРОКОНТАКТНЫЙ ТЕЛЕГРАФНЫЙ РЕГУЛЯТОР, регулятор, предназначенный для поддержания номинальной частоты вращения вала электродвигателя в приводе электромеханич. телеграфного аппарата с целью уменьшения искажений при передаче телеграфных сигналов.

ЭЛЕКТРОКОПТИЛЬНАЯ УСТАНОВКА, см. в ст. Коптильная печь.

ЭЛЕКТРОКОПЧЕНИЕ, способ копчения, при к-ром тепловая обработка рыбных или мясных продуктов осуществляется с помощью инфракрасного излучения, а осаждение дыма на продукт происходит в электрич. поле при коронном разряде (электрич. поле, воздействуя на ионизированные частицы дыма, вызывает его ускоренное осаждение на продукт). Э. позволяет сократить продолжительность копчения, полностью механизировать и автоматизировать про-из-во, повысить коэфф. использования дыма. Одновременно при Э. уменьшаются технологич. потери на 6-12%, снижаются трудоёмкость процесса, а также себестоимость продукции при её высоком качестве.

ЭЛЕКТРОКОРУНД, искусственный абразивный материал, в состав к-рого входят преим. закристаллизованный глинозём (алюминия окись) в форме а-фазы (корунда), а также окислы кремния, титана, кальция и железа. Получают плавкой глинозёмсодержащего сырья в дуговых печах с последующей кристаллизацией расплава. Плотность Э. (кроме сферокорунда) 3,9-4,0 г/см3, микротвёрдость 19-24 Гн/м2. В зависимости от содержания глинозёма и особенностей технологии плавки различают неск. разновидностей Э. Нормальный Э., состоящий из корунда (до 95%) с небольшой примесью шлаков и ферросплава, широко используется для обработки металлов. Белый Э. получают путём переплава чистой окиси алюминия (у-фазы). Содержит 98-99% корунда и сравнительно мало примесей. По свойствам и хим. составу белый Э. более однороден, чем нормальный. Микротвёрдость его несколько выше, чем у нормального Э. Применяется для обработки высокопрочных сплавов, при скоростном и прецизионном шлифовании. Легированный Э. (хромистый, титанистый, циркониевый) имеет свойства, зависящие от состава и содержания примесных элементов. Абразивные инструменты из легированного Э. применяются для обработки деталей из конструкционных и нек-рых инструментальных сталей. Монокорунд, состоящий из плоскогранных изометричных зёрен монокристаллич. корунда с небольшим содержанием примесей (2-3%), получают путём сплавления боксита с сернистым железом. Абразивные инструменты из монокорунда используются для шлифования труднообрабатываемых жаропрочных, конструкционных и др. легированных сталей и сплавов. С ф е р о к о р у н д получают из глинозёма в виде полых корундовых сфер (плотность его 2,2 г/см3); содержит небольшое (<1%) количество примесей. Абразивные инструменты из сферокорунда применяют для обработки мягких и вязких материалов (цветных металлов, пластмасс, резины, кожи). Электрокорундовые зёрна, порошки и микропорошки составляют ок. 80% общего объёма произ-ва абразивных материалов. Благодаря высокой огнеупорности, стойкости в кислотах и щелочах, хорошей теплопроводности, малому термич. расширению и низкой электропроводности Э. широко применяется также для изготовления огнеупорных, химически инертных изделий, керамич. деталей электровакуумных приборов, изоляторов и т. д. Э. используют и как наполнитель в жароупорных бетонах и массах для набивки тиглей индукционных печей. Значит, количество Э. потребляет чёрная металлургия (получение синтетич. шлаков для рафинирования жидкой стали). Области использования Э. непрерывно расширяются.

Лит.: Производство абразивных материалов, Л., 1968; Р ы с с М. А., Производство металлургического электрокорунда, М., 1971; Абразивные материалы и инструменты. Каталог-справочник, М., 1976. М- Л. Мейльман.

ЭЛЕКТРОКРИСТАЛЛИЗАЦИЯ, электроосаждение, кристаллизация металлов и сплавов на катоде при электролизе растворов и расплавов соответствующих солей. Рост кристаллов при Э. металлов имеет много общего с кристаллизацией из пара или раствора. Фактором, определяющим пересыщение при Э., является перенапряжение, возникающее на электроде в ходе электрохимич. реакции. В зависимости от величины перенапряжения рост кристаллов может происходить путём спирально-слоевого роста на винтовых дислокациях, образования и разрастания двумерных зародышей (особенно на бездислокациояных кристаллах) и при достаточно высоких пересыщениях - путём образования трёхмерных зародышей или нормального роста кристаллов.

Возможность изменения перенапряжения на катоде в широких пределах позволяет при Э. получать слои металлов с сильно различающимися свойствами. Так, в зависимости от условий образования осадков плотность дислокаций в них может изменяться от 106 до 1012 см-2; соответственно изменяются и такие свойства, как электропроводность, твёрдость, пластичность. Высокие плотности дислокаций были обнаружены в осадках меди, никеля, железа, хрома, платины, серебра и др. Особенно сильное влияние на структуру осадков металлов, полученных методом Э., оказывает адсорбция поверхностно-активных веществ и включение примесей. Э. лежит в основе электрометаллургии, рафинирования металлов, гальванотехники. Ю. М. Полукаров.

ЭЛЕКТРОЛЕЧЕНИЕ, электротерапия, лечение электрич. токами и электромагнитными полями. При Э. применяют постоянный ток низкого напряжения (см. Гальванизация), переменные токи (см. Дарсонвализация, Диатермия), в т. ч. импульсные токи низкой частоты (см. Импульстерапия), постоянное электрич. поле высокой напряжённости (см. Франк линизация) и электромагнитные поля различных частот (см. Индуктотер-мия, Ультракоротковолновая терапия), в т. ч. СВЧ (микроволновая терапия). Э. проводят в виде местных и общих воздействий с наложением электродов на тело пациента (при процедурах с применением электрич. тока) или без электродов (при использовании электромагнитных полей). Разнообразие факторов Э. и возможность менять их параметры позволяют индивидуализировать лечебные процедуры. Особенно рационально использование Э. в импульсном режиме, т. к. регулируемые частота и длительность импульсов обеспечивают нормализацию мн. нарушенных физиол. процессов. В частности, импульсные токи низкой частоты могут имитировать эффекты нервных импульсов и оказывать на ткани трофич. влияние, нормализуя нарушенную нейроэндокринную регуляцию и избирательно стимулируя деятельность определённых органов и систем. При всех методах Э. проявляются общие, т. н. неспецифич., реакции - усиление кровообращения, обмена веществ, трофики тканей, компенсаторно-защитных свойств организма. Наряду с этим в ответ на действие каждого фактора возникают спе-цифич. реакции, проявления к-рых зависят от его физ. свойств, методики применения и особенностей организма. Благодаря успехам в изучении лечебного действия физ. факторов и достижениям электротехники и электромедицинского приборостроения Э. занимает значит, место в терапии мн. заболеваний и реабилитации больных.

Лит.: Аникин М. М., Варшавер Г. С., Основы физиотерапии, 2 изд., М., 1950; Л и венцев Н. М., Л и в е н с о н А. Р., Электромедицинская аппаратура, 4 изд., М., 1974; Справочник по физиотерапии, под ред. А. Н. Обросова, М., 1976;

Dumoulin J., Bisschop G. de, Electrotherapie, 2 ed., P., 1971; Ede 1 H., Fibel der Elektrodiagnostik und Elektrptherapie, 3 Aufi., Dresden, 1975.

В. М. Стругацкий.

ЭЛЕКТРОЛИЗ (от электро... и греч. lysis - разложение, растворение, распад), совокупность процессов электрохимич. окисления-восстановления на погруженных в электролит электродах при прохождении через него электрич. тока. Э. лежит в основе электрохимич. метода лабораторного и пром. получения различных веществ - как простых (Э. в узком смысле слова), так и сложных (электросинтез).

Изучение и применение Э. началось в кон. 18 - нач. 19 вв., в период становления электрохимии. Для разработки теоретич. основ Э. большое значение имело установление М. Фарадеем в 1833-34 точных соотношений между количеством электричества, прошедшего при Э., и количеством вещества, выделившегося на электродах (см. Фарадея законы). Пром. применение Э. стало возможным после появления в 70-х гг. 19 в. мощных генераторов постоянного тока.

Особенность Э.- пространственное разделение процессов окисления и восстановления: электрохимич. окисление происходит на аноде, восстановление - на катоде. Э. осуществляется в спец. аппаратах - электролизёрах.

Э. происходит за счёт подводимой энергии постоянного тока и энергии, выделяющейся при хим. превращениях на электродах. Энергия при Э. расходуется на повышение гиббсовой энергии системы в процессе образования целевых продуктов и частично рассеивается в виде теплоты при преодолении сопротивлений в электролизёре и в др. участках электрич. цепи.

На катоде в результате Э. происходит восстановление ионов или молекул электролита с образованием новых продуктов. Катионы принимают электроны и превращаются в ионы более низкой степени окисления или в атомы, напр, при восстановлении ионов железа (F3+ + е-= Fe2+), элсктроосаждении меди (Си2+ + + 2е-= Сu). Нейтральные молекулы могут участвовать в превращениях на катоде непосредственно или реагировать с промежуточными продуктами катодного процесса. На аноде в результате Э. происходит окисление ионов или молекул, находящихся в электролите или принадлежащих материалу анода (анод растворяется или окисляется), напр.: выделение кислорода (4ОН- =4е- + 2Н2О + C2) и хлора (2С1- = 2е- + Сl2), образование хромата (Сг3+ + ЗОН- + Н2О = CrO4 2- + 5Н+ + Зе-), растворение меди (Си = Си2+ + 2е-), оксидирование алюминия (2А1 + ЗН2О = Аl2Оз +6Н+ + -). Электрохимич. реакция получения того или иного вещества (в атомарном, молекулярном или ионном состоянии) связана с переносом от электрода в электролит (или обратно) одного или нескольких зарядов в соответствии с уравнением хим. реакции. В последнем случае такой процесс осуществляется, как правило, в виде последовательности элементарных одноэлектронных реакций, то есть постадийно, с образованием промежуточных ионов или радикальных частиц на электроде, часто остающихся на нём в адсорбированном состоянии.

Скорости электродных реакций зависят от состава и концентрации электролита, от материала электрода, электродного потенциала, темп-ры и ряда др. факторов. Скорость каждой электродной реакции определяется скоростью переноса электрич. зарядов через единицу поверхности электрода в единицу времени; мерой скорости, следовательно, служит плотность тока.

Кол-во образующихся при Э. продуктов определяется законами Фарадея. Если на каждом из электродов одновременно образуется ряд продуктов в результате нескольких электрохимич. реакций, доля тока (в %), идущая на образование продукта одной из них, наз. выходом данного продукта по току.

Преимущества Э. перед хим. методами получения целевых продуктов заключаются в возможности сравнительно просто (регулируя ток) управлять скоростью и селективной направленностью реакций. Условия Э. легко контролировать, благодаря чему можно осуществлять процессы как в самых "мягких", так и в наиболее -"жёстких" условиях окисления или восстановления, получать сильнейшие окислители и восстановители, используемые в науке и технике. Э.- основной метод пром. произ-ва алюминия, хлора и едкого натра, важнейший способ получения фтора, щелочных и щелочноземельных металлов, эффективный метод рафинирования металлов. Путём Э. воды производят водород и кислород. Электрохимический метод используется для синтеза органич. соединений различных классов и многих окислителей (персульфатов, перманганатов, перхлоратов, перфторорганич. соединений и др.). Применение Э. для обработки поверхностей включает как катодные процессы гальванотехники (в машиностроении, приборостроении, авиационной, электротехнич., электронной пром-сти), так и анодные процессы полировки, травления, размерной анодно-механической обработки, оксидирования (анодирования) металлич. изделий (см. также Электрофизические и электрохимические методы обработки). Путём Э. в контролируемых условиях осуществляют защиту от коррозии металлич. сооружений и конструкций (анодная и катодная защита).

Лит. см. при ст. Электрохимия.

Э. В. Касаткин.

ЭЛЕКТРОЛИЗЁРЫ, аппараты для электролиза, состоящие из одной или многих электролитических ячеек. Э. представляет собой сосуд (или систему сосудов), наполненный электролитом с размещёнными в нём электродами - катодом и анодом, соединёнными соответственно с отрицательным и положительным полюсами источника постоянного тока. В пром-сти и лабораторной практике применяют Э. различных типов и конструкций (напр., открытые и герметически закрытые, для периодической и непрерывной работы, с неподвижными и движущимися электродами, с различными системами разделения продуктов электролиза). В зависимости от назначения Э. рассчитываются для работы при различных темп-pax - от минусовых (при электрохимич. синтезе малостойких кислородных соединений) до высоких плюсовых (при электролизе расплавленных электролитов в произ-ве алюминия, кальция и др. металлов). Соответственно Э. снабжают устройствами для нагрева или охлаждения электролита или электродов.

Применяют Э. с диафрагмой - пористой перегородкой или мембраной,отделяющей катодное пространство от анодного, проницаемой для ионов, но затрудняющей механич. смешение и диффузию. Для изготовления диафрагм используются асбест, полимерные материалы и керамика, находят применения Э. с ионообменными мембранами. По способу включения в электрическую цепь Э. разделяются на моно- и биполярные. Монополярный Э. состоит из одной электролитической ячейки с электродами одной полярности, каждый из которых может состоять из неск. элементов, включённых параллельно в цепь тока. Биполярный Э. имеет большое число ячеек (до 100-160), включённых последовательно в цепь тока, причём каждый электрод, за исключением двух крайних, работает одной стороной как катод, а другой как анод. Для изготовления анодов применяют графит, углеграфитовые материалы, платину, окислы нек-рых металлов, свинец и его сплавы; используются малоизнашивающиеся титановые аноды с активным покрытием из смеси окислов рутения и титана, а также платины и её сплавов. Для катодов в большинстве Э. используется сталь. Применяются также Э. с жидкими электродами (напр., в одном из методов произ-ва хлора и гидроокиси натрия в качестве катода используют ртуть). Нек-рые Э. работают под давлением, напр, разложение воды ведётся под давлением до 4 Мн/м2(40 кгс/см2); разрабатываются Э. для работы под более высоким давлением. Материалы для изготовления Э. выбираются с учётом агрессивности электролита и продуктов электролиза, темп-ры и др. условий. Широко применяется сталь, в т. ч. с различными защитными покрытиями, пластин, массы, стекло и стеклопластики, керамика. Совр. крупные Э. имеют высокую нагрузку: монополярные до 400-500 ка, биполярные - эквивалентную 1600 ка. Л. М. Якименко.

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ, распад вещества на ионы при растворении. Э. д. происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроско-пич. методов, это взаимодействие носит в значит, мере хим. характер (см. Сольватация). Наряду с сольватирующей способностью молекул растворителя определённую роль в Э. д. играет также мак-роскопич. свойство растворителя - его диэлектрич. проницаемость.

Классич. теория Э. д. была создана С. Аррениусом и В. Оствалъдом в 80-х гг. 19 в. Она основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации а, т. е. долей распавшихся молекул электролита. Динамич. равновесие между недиссоциированными молекулами и ионами описывается действующих масс законом. Напр., Э. д. бинарного электролита КА выражается ур-нием типа КА = К+ + А-. Константа диссоциации Хд определяется активностями катионов ак+, анионов аА- и недиссоциированных молекул aКА след, образом:
30-04-12.jpg

Значение Кд зависит от природы растворённого вещества и растворителя, а также от темп-ры и может быть определено несколькими экспериментальными методами. Степень диссоциации се может быть рассчитана при любой концентрации с электролита с помощью соотношения:
30-04-13.jpg

где f - средний коэфф. активности электролита (см. также Оствалъда закон разбавления).

Классич. теория Э. д. применима лишь к разбавленным растворам слабых электролитов. Сильные электролиты в разбавленных растворах диссоциированы практически полностью, поэтому представления о равновесии между ионами и недиссоциированными молекулами лишено смысла. Согласно представлениям, выдвинутым в 20-30-х гг. 20 в. В. К. Семенченко (СССР), Н. Бьерру-мом (Дания), Р. М. Фуоссом (США) и др., в растворах сильных электролитов при средних и высоких концентрациях образуются ионные пары и более сложные агрегаты. Современные спектроскопии, данные показывают, что ионная пара состоит из двух ионов противоположного знака, находящихся в контакте ("контактная ионная пара") или разделённых одной или несколькими молекулами растворителя ("разделённая ионная пара"). Ионные пары электрически нейтральны и не принимают участия в переносе электричества. В сравнительно разбавленных растворах сильных электролитов равновесие между отдельными сольватированными ионами и ионными парами может быть приближённо охарактеризовано, аналогично классич. теории Э. д., константой диссоциации (или обратной величиной - константой ассоциации). Это позволяет использовать ур-ние (2) для расчёта соответствующей степени диссоциации, исходя из экспериментальных данных.

В простейших случаях (большие одноатомные однозарядные ионы) приближённые значения константы диссоциации в разбавленных растворах сильных электролитов можно вычислить теоретически, исходя из представлений о чисто электростатич. взаимодействии между ионами в непрерывной среде - растворителе.

Лит.: Измайлов Н. А., Электрохимия растворов, 3изд., М.,1976; М о n k С. В., Electrolytic dissociation, L.- N. Y., 1961. А. И. Мишустин.

ЭЛЕКТРОЛИТИЧЕСКАЯ СВАРКА, производится при нагреве соединяемых частей постоянным электрич. током напряжением 110-220 в в водном щелочном электролите. Свариваемые части, погружённые в ванну с электролитом, образуют катод, анодом служит металлич. пластина. Э. с. ещё несовершенна и применяется редко, в основном для сварки мелких деталей, проволок и т. п. из различных металлов.

ЭЛЕКТРОЛИТИЧЕСКАЯ ЯЧЕЙКА, сосуд с электролитом (электролитами), снабжённый электродами, в к-ром реализуются электрохимич. реакции. Основной конструкционный элемент пром.электролизёров. Как самостоятельный аппарат используется гл. обр. в лабораторных условиях при изучении электродных процессов, проведении электроаналитич. измерений, получении и очистке веществ электролизом. Конструкции Э. я. чрезвычайно разнообразны. В электрохимич. работах обычно применяют Э. я. с тремя электродами: рабочим (исследуемым), вспомогательным (поляризующим) и электродом сравнения. Сложные Э. я. могут содержать также электроды индикаторные и др.; специальные Э. я. должны удовлетворять ряду дополнительных требований, напр, обеспечивать сочетание электрохимич. и др. физико-химич. методов исследования.

Э. я. находят применение при моделировании физическом; в частности, с помощью Э. я. можно моделировать электрич. поля электронных устройств, напр, электронных ламп. А. Н. Чемоданов.

ЭЛЕКТРОЛИТЫ (от электро... и греч. lytos - разлагаемый, растворимый), жидкие или твёрдые вещества и системы, в к-рых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрич. тока. В узком смысле Э. наз. вещества, растворы к-рых проводят электрич. ток ионами, образующимися в результате электролитической диссоциации. Э. в растворах подразделяют на сильные и слабые. Сильные Э. практически полностью диссоциированы на ионы в разбавленных растворах. К ним относятся мн. неорганич. соли и нек-рые неорганич. кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты, амиды и др.). Молекулы слабых Э. в растворах лишь частично диссоциированы на ионы, к-рые находятся в динамич. равновесии с недиссоциированными молекулами. К слабым Э. относится большинство органич. кислот и мн. органич. основания в водных и неводных растворах. Деление Э. на сильные и слабые в нек-рой степени условно, т. к. оно отражает не свойства самих Э., а их состояние в растворе. Последнее зависит от концентрации, природы растворителя, темп-ры, давления и др.

По количеству ионов, на к-рые диссоциирует в растворе одна молекула, различают бинарные, или одно-одновалентные, Э. (обозначаются 1-1 Э., напр. КС1), одно-двухвалентные Э. (обозначаются 1-2 Э., напр. СаСЬ) и т. д. Э. типа 1-1, 2-2, 3-3 и т. п. наз. симметричными, типа 1-2, 1-3 и т. п. - несимметричными.

Свойства разбавленных растворов слабых Э. удовлетворительно описываются классич. теорией электролитич. диссоциации. Для не слишком разбавленных растворов слабых Э., а также для растворов сильных Э. эта теория неприменима, поскольку они являются сложными системами, состоящими из ионов, недиссоциированных молекул или ионных пар, а также более крупных агрегатов. Свойства таких растворов определяются характером взаимодействий ион-ион, ион-растворитель, а также изменением свойств и структуры растворителя под влиянием растворённых частиц. Совр. статистич. теории сильных Э. удовлетворительно описывают свойства лишь очень разбавленных (<0,1 моль!л) растворов.

Э. чрезвычайно важны в науке и технике. Все жидкие системы в живых организмах содержат Э. Важный класс Э. - полиэлектролиты. Э. являются средой для проведения мн. хим. синтезов и процессов электрохимич. производств. При этом всё большую роль играют неводные растворы Э. Изучение свойств растворов Э. важно для создания новых химических источников тока и совершенствования технологич. процессов разделения веществ - экстракции из растворов и ионного обмена.

Лит. см. при ст. Электролитическая диссоциация. А. И. Muшустин.

ЭЛЕКТРОЛОВ, пром. способ лова рыб, использующий их характерные реакции на протекающий через тело электрич. ток. В зависимости от силы тока (постоянного или импульсного) в поведении рыб различают 3 стадии: отпугивание, направленное движение к аноду (т. н. анодная реакция) и электронаркоз. При Э. может использоваться любая из трёх стадий. Границы стадий зависят от вида, размеров и физиологического состояния рыб. Кроме того, реакция рыб разных видов зависит от длительности и частоты импульсов. При Э. ток через тело рыб протекает при попадании их в электрич. поле, возникающее между электродами, находящимися в воде и подключёнными к источнику тока. Э. на постоянном токе осуществляется с помощью относительно маломощных электрич. генераторов; применяется на пресных водоёмах. В морской воде более перспективен Э. с помощью импульсного тока, т. к. при этом резко сокращается расход электроэнергии. Осн. разновидности Э. - лов электрифицированным тралом и бессетевой лов. Для лова донных рыб электроды устанавливают в устьевой части трала, а параметры электрич. импульсов подбирают так, чтобы вызвать у рыб анодную реакцию и не дать им уйти под нижнюю подбору трала. При лове рыб, обитающих в толще воды, используют эффект электронаркоза, а электроды устанавливают на предмешковой части трала. Рыбы, попавшие в межэлектродное пространство, нар-котизуются и смываются потоком воды в куток, что ускоряет формирование улова. Кроме того, эффективность лова растёт за счёт уменьшения выхода рыб из трала. Бессетевым Э. вылавливают рыб, обладающих заметной анодной реакцией. Под влиянием тока они направляются в область действия насосов. Э. с помощью импульсных токов часто используют в сочетании со светоловом. Для повышения эффективности Э. проводятся исследования по выбору параметров электрич. поля и его конфигурации, силы тока, частоты следования импульсов и т. д. Лит.: Стернин В. Г., Никоноров И. В., Бумейстер Ю. К., Электролов рыбы. М., 1972. С. К. Малъкявичюс.

ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ ЭКРАН, плоский невакуумный визуальный индикатор, выполненный в виде прямоугольной сетки из двух систем параллельных прозрачных электропроводящих полосок (электродов); полоски одной системы отделены от полосок другой слоем из электролюминофора (см. Люминофоры). Э. э. используются в осциллографич. приборах, отображения информации устройствах малой ин формац, ёмкости, различных табло и т. д. В наиболее распространённом Э. э. при создании переменной разности потенциалов между любой из пар перпендикулярных электродов элемент слоя, расположенный в их перекрестье, начинает светиться, причём яркость свечения зависит от величины разности потенциалов. Управляя определённым образом яркостью свечения элементов, на Э. э. можно воспроизводить сложные изображения.

Лит.: Прикладная электролюминесценция, М., 1974.

ЭЛЕКТРОЛЮМИНЕСЦЕНЦИЯ, люминесценция, возбуждаемая электрич. полем. Наблюдается в газах и кристалло-фосфорах, атомы (или молекулы) к-рых переходят в возбуждённое состояние при возникновении к.-л. формы электрич. разряда. Э. газов - свечение электрического разряда в газах - исследуется с сер. 19 в. и используется в газоразрядных источниках света. Э. твёрдых тел была открыта в 1923 сов. учёным О. В. Лосевым на SiC, а в 1936 - франц. учёным Ж. Дестрио на изолированных кристаллах ZnS, активированных Си и С1.

Из различных типов Э. твёрдых тел наиболее важны инжекционная и предпробойная. Инжекционная Э. характерна для р-re-перехода в SiC или GaP, подключённого в прямом направлении к источнику постоянного напряжения. При этом в n-область вводятся (инжектируются) избыточные дырки, а в р-область - электроны или те и другие вводятся в высокоомный тонкий слой между п- и р-областями. Свечение возникает при рекомбинации электронов и дырок в этом слое. Предпробойная Э. наблюдается, напр., в порошкообразном ZnS, активированном Си, А1 и др. и помещённом в диэлектрик между обкладками конденсатора, на к-рый подаётся переменное напряжение. В каждый полупериод на обращённых к катоду сторонах кристаллов ZnS возникает область сильного электрич. поля. Электроны, проникающие в неё с поверхности кристалла, ускоряются полем и ионизуют атомы кристаллич. решётки. Образовавшиеся дырки захватываются центрами свечения. В следующий полупериод поле направлено в противоположную сторону и под его воздействием электроны возвращаются к центрам свечения, где происходит их рекомбинация с дырками, сопровождаемая свечением.

Э. твёрдых тел применяется для индикаторных устройств, основой к-рых служит электролюминесцентный конденсатор (см. рис.) или светоизлучающий диод. К таким устройствам относятся знаковые индикаторы со светящимися цифрами, буквами и др. знаками, к-рые могут меняться при переключении контактов, матричные экраны для получения сложных светящихся изображений (см. Электролюминесцентный экран), мнемосхемы, преобразователи изображений и т. д. Лит.: Прикладная электролюминесценция, М., 1974; Верещагин И. К., Электролюминесценция кристаллов, М., 1974.

М. В. Фок.

ЭЛЕКТРОМАГНИТ, электротехнич. устройство, состоящее обычно из токопроводящей обмотки и ферромагнитного сердечника, к-рый намагничивается (приобретает свойства магнита) при прохождении по обмотке электрич. тока. Э. используют в основном для создания магнитного потока (в электрич. машинах) и усилия (в приводных механизмах). Несмотря на конструктивное разнообразие, Э. обычно состоят из следующих частей, имеющих одинаковое назначение: катушки с токопроводящей обмоткой, намагничивающегося сердечника (неподвижной части магнитопровода) и якоря (подвижной части магнитопровода), передающего усилие деталям приводимого в действие механизма. Обмотки Э. выполняются из изолир. алюминиевого или медного провода (существуют также Э. с обмоткой из сверхпроводящих материалов; см. Магнит сверхпроводящий). Магнитопроводы Э. изготовляют из магнитно-мягких материалов - обычно из электротехнической или качественной конструкц. стали, литой стали и чугуна, железо-никелевых и железо-кобальтовых сплавов. Для снижения потерь на вихревые токи магнитопроводы выполняют из набора листов.

В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы Э. подразделяют на 3 группы: Э. постоянного тока нейтральные, Э. постоянного тока поляризованные, Э. переменного тока. Унейтральных Э. сила притяжения зависит только от величины магнитного потока и не зависит от направления тока в обмотке; при отсутствии тока в обмотке магнитный поток, а следовательно, сила притяжения практически равны нулю. У поляризованных Э. создаётся 2 независимых магнитных потока: поляризующий, который образуется обычно полем постоянного магнита (иногда другого Э.), и рабочий магнитный поток, который возникает под действием намагничивающей силы рабочей или управляющей обмотки. Если ток в них отсутствует, на якорь действует сила притяжения, созданная поляризующим магнитным потоком. Действие такого Э. зависит как от величины магнитного потока, так и от направления электрич. тока в рабочей обмотке. В Э. переменного тока питание обмотки осуществляется от источника переменного тока, а магнитный поток периодически изменяется по величине и направлению, в результате чего сила притяжения пульсирует от нуля до макс, значения с удвоенной частотой по отношению к частоте питающего тока. Э. различают также по ряду других признаков: по способу включения обмоток - с параллельными и последовательными обмотками; по характеру работы - работающие в длительном, прерывистом и кратковрем. режимах; по скорости действия - быстродействующие и замедленного действия и т. д.

Наиболее широкая и важная область применения Э. - электрич. машины и аппараты, входящие в системы пром. автоматики, в аппаратуру регулирования, защиты электротехнич. установок. В составе различных механизмов Э. используются в качестве привода для осуществления необходимого постулат, перемещения (поворота) рабочих органов машин или для создания удерживающей силы. Примером таких Э. могут служить Э. грузоподъёмных машин, Э. муфт сцепления и тормозов, Э., применяемые в различных пускателях, контакторах, выключателях, электроизмерит. приборах и т. п. Перспективно использование Э. в тяговых приводах скоростных трансп. средств для создания т. н. магнитной подушки. Развивающейся областью применения Э. является медицинская аппаратура. В науч. целях Э. используют в эксперимент, химии, биологии, физике. В связи с широтой применения конструктивное исполнение, размеры, потребляемая мощность Э. находятся в широких пределах. В зависимости от назначения Э. могут весить от долей г до сотен т, потреблять электрич. мощность - от долей em до десятков Мет.

Лит.: Гордон А. В., Сливинекая А. Г., Электромагниты постоянного тока, М.- Л., 1960; Караси к В. Р., Физика и техника сильных магнитных полей, М., 1964; Т е р - А к о по в А. К., Динамика быстродействующих электромагнитов, М.- Л., 1965; Сливинская А. Г., Электромагниты и постоянные магниты, М., 1972. М. И. Озеров.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ, см. Индукция электромагнитная.

ЭЛЕКТРОМАГНИТНАЯ МУФТА, электромагнитное устройство для соединения и разъединения двух соосных валов или вала со свободно сидящей на нём деталью (зубчатым колесом, шкивом и т. п.). Э. м. обеспечивают дистанц. управление и удобство автоматизации. Применяют в металлореж. станках, тепловозах и т. д. Различают фрикционные (обычно дисковые, реже конусные), зубчатые (с мелкими зубьями, обычно располож. на торцовых поверхностях соединяемых частей муфты), порошковые и жидкостные (зазор в магнитопроводя-щей системе между ведущей и ведомой частями муфты заполнен порошкообразной или жидкой смесью, в состав к-рой входит ферромагнитный порошок; под действием магнитного поля вязкость такой смеси возрастает, создавая сцепление частей муфты). К Э. м. относятся также электроиндукц. (синхронные и асинхронные) муфты, о к-рых см. в ст. Муфта.

ЭЛЕКТРОМАГНИТНАЯ РАЗВЕДКА, группа индуктивных методов электрической разведки. Начала разрабатываться с нач. 20 в. в Швеции и США, в СССР - в 1928-30. При Э. р. источником первичного магнитного поля является незаземлённый контур, расположенный на поверхности земли, через к-рый пропускается переменный электрич. ток. Токи, индуцированные первичным магнитным полем в хорошо проводящих участках земной коры (напр., рудных залежах), создают вторичное магнитное поле. Суммарное магнитное поле измеряют на поверхности земли многовитковыми рамками (магнитоиндукционными датчиками). По графикам измеренных вертикальных или горизонтальных составляющих напряжённости магнитного поля определяют положение хорошо проводящих или магнитных объектов в земной коре.

По зависимости применяемого поля от времени различают низкочастотные индуктивные методы (гармонич. колебания напряжённости поля) и методы переходных процессов, в к-рых первичное поле изменяется ступенчато и исследуется переходный процесс после исчезновения первичного поля.

По типу используемого источника поля выделяют неск. методов Э. р.: незаземлённой петли (НП), длинного кабеля (ДК) и дипольного индуктивного профилирования (ДИП). В методе НП источником поля является прямоугольная петля со сторонами от неск. сотен м до неск. км. Магнитное поле измеряется на профилях, расположенных в центре петли перпендикулярно к её длинной стороне. Метод применяется для поисков месторождений хорошо проводящих руд. В методе ДК в качестве источника первичного поля используется длинный (до неск. км) прямолинейный кабель, магнитное поле к-рого изучается вдоль профилей, перпендикулярных кабелю. Применяется для решения задач геол. картирования и прослеживания рудоконтролирующих структур. В ДИП источником поля является магнитный диполь - многовитковая рамка с диаметром ок. 1 м. Метод характеризуется меньшей глубиной исследования и используется при поисках, хорошо проводящих руд и геол. картировании .

Лит.: Электромагнитные методы разведки в рудной геофизике, М., 1966.

Ю. В. Якубовский.

ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ (ЭМС) радиоэлектронных средств, способность радиоэлектронных средств (РЭС) различного назначения работать одновременно (совместно) так, что помехи радиоприему (с учётом воздействия источников радиопомех индустриальных), возникающие при такой работе, приводят лишь к незначительному (допустимому) снижению качества выполнения РЭС своих функций (см. также Помехоустойчивость). При одновременной работе РЭС (а также электротехнич. устройств, излучающих электромагнитные волны) помехи радиоприёму неизбежны. Интенсивность помех определяется кол-вом действующих излучателей, их мощностью, расположением в пространстве, формой диаграммы направленности антенн, условиями распространения радиоволн и т. д. Обеспечение ЭМС сводится к созданию условий для нормальной совместной эксплуатации всего разнообразия РЭС.

Обеспечением ЭМС начали заниматься почти одновременно с практич. освоением радиоволн (напр., для радиосвязи). Постепенно эта задача усложнялась и, наконец, с 50-х гг. 20 в. переросла в сложную проблему гл. обр. из-за возросшей загрузки освоенных диапазонов радиочастот, непрерывного увеличения кол-ва и мощности излучающих средств, повышения чувствительности радиоприёмников, несовершенства РЭС (напр., наличия у радиопередатчиков внеполрсных и побочных излучений, а у радиоприёмников - внеполосных каналов и каналов побочного приёма), усложнения функций РЭС и режима их работы (частые включения и выключения, перестройка по частоте, перемещения в пространстве и т. п.) и мн. др. факторов.

Меры по обеспечению ЭМС подразделяются на организационные и технические. К организационным относятся: применение пространств, разделения (разноса) РЭС - одноврем. использования одних и тех же частотных диапазонов в различных зонах земного шара, если это не грозит взаимными радиопомехами; временного разноса - поочерёдной работы РЭС на одной несущей частоте по определённой программе во времени; частотного разноса - одноврем. работы на различных несущих частотах и др. К техническим относятся: создание радиопередающих и электротехнич. устройств, более совершенных с точки зрения уменьшения мешающих излучений; разработка радиоприёмных устройств, обладающих меньшей чувствительностью к таким излучениям, и др.

В СССР обеспечение ЭМС возложено на Гос. комиссию по радиочастотам СССР (ГКРЧ СССР; создана в 1958; до 1972 наз. Междуведомственной комиссией по радиочастотам). Эта комиссия, осуществляя единую технич. политику в вопросах, связанных с рациональным распределением и использованием ра-

диочастотного спектра, занимается нормированием параметров радиоизлучений и приёма РЭС и др. аспектами ЭМС. Среди норм, утверждённых ГКРЧ СССР, - общесоюзные нормы на ширину полосы радиочастот и внеполосные спектры излучений радиопередающих устройств, на допустимые отклонения частоты радиопередатчиков и уровни их побочных излучений, на допускаемый уровень индустриальных радиопомех и т. д. Эти нормы являются обязательными для всех мин-в и ведомств, разрабатывающих, изготавливающих, закупающих в других странах и эксплуатирующих РЭС всех назначений, а также электротехнич. устройства, создающие индустриальные радиопомехи. Разработку рекомендаций, направленных на обеспечение ЭМС, осуществляет Международный союз электросвязи.

Лит.: Калашников Н. И., Основы расчета электромагнитной совместимости систем связи через ИСЗ с другими радиослужбами, М., 1970; Князев А. Д., П ч е л-к и н В. Ф., Проблемы обеспечения совместной работы радиоэлектронной аппаратуры, М., 1971; Пчелкин В. Ф., Электромагнитная совместимость радиоэлектронных средств, М., 1971. В. Ф. Пчелкин.

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, особая форма материи, посредством к-рой осуществляется взаимодействие между электрически заряж. частицами (см. Поля физические). Э. п. в вакууме характеризуется вектором напряжённости электрического поля Е и магнитной индукцией В, к-рые определяют силы, действующие со стороны поля на неподвижные и движущиеся заряж. частицы. Наряду с векторами Е и В, измеряемыми непосредственно, Э. п. может характеризоваться скалярным ф и векторным А потенциалами, к-рые определяются неоднозначно, с точностью до градиентного преобразования (см. Потенциалы электромагнитного поля). В среде Э. п. характеризуется дополнительно двумя вспомогат. величинами: напряжённостью магнитного поля Н и электрич. индукцией D (см. Индукция электрическая и магнитна я).

Поведение Э. п. изучает классич. электродинамика, в произвольной среде оно описывается Максвелла уравнениями, позволяющими определить поля в зависимости от распределения зарядов и токов. Микроскопические Э. п., созданные отд. элементарными частицами, характеризуются напряжённостями микроско-пич. полей: электрич. поляе и магнитного Л. Их ср. значения связаны с макроскопич. характеристиками Э. п. след, образом: е = Е, Н - В. Микроскопич. поля удовлетворяют Лоренца - Максвелла уравнениям.

Э. п. неподвижных или равномерно движущихся заряж. частиц неразрывно связано с этими частицами; при ускоренном движении частиц Э. п. "отрывается" от них и существует независимо в форме электромагнитных волн.

Порождение Э. п. переменным магнитным полем и магнитного поля - переменным электрическим приводит к тому, что электрич. и магнитные поля не существуют обособленно, независимо друг от друга. Компоненты векторов, характеризующих Э. п., образуют, согласно относительности теории, единую физ. величину - тензор Э. п., компоненты к-рого преобразуются при переходе от одной инерциальной системы отсчёта к другой в соответствии с Лоренца преобразованиями.

При больших частотах Э. п. становятся существенными его квантовые (дискретные) свойства. В этом случае классич. электродинамика неприменима и Э. п. описывается квантовой электродинамикой.

Лит.: Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики, т. 2); Ф е и н м а н Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, в. 5 - 7, М., 1966 - 67; Л а н д а у Л. Д., Л и ф ш и ц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); их же. Электродинамика сплошных сред, М., 1959. Г. Я. Мякишев.

ЭЛЕКТРОМАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ, тип фундаментальных взаимодействий (наряду с гравитационным, слабым и сильным), к-рый характеризуется участием электромагнитного поля в процессах взаимодействия. Электромагнитное поле (в квантовой физике - фотоны) либо излучается или поглощается при взаимодействии, либо переносит взаимодействие между телами. Так, притяжение между двумя неподвижными телами, обладающими разноимёнными электрич. зарядами, осуществляется посредством электрич. поля, создаваемого этими зарядами; сила притяжения пропорциональна произведению зарядоз н обратно пропорциональна квадрату расстояния между ними (закон Кулона). Такая зависимость от расстояния определяет дальнодействующий характер Э. в., его неограниченный (как и у гравитационного взаимодействия) радиус действия. Поэтому даже в атомах (на расстояниях ~ 10~8с.и) электромагнитные силы на много порядков превышают ядерные, радиус действия к-рых ~ 10~13сл. Э. в. ответственно за существование основных "кирпичиков" вещества: атомов и молекул и определяет взаимодействие ядер и электронов в этих микросистемах. Поэтому к Э. в. сводится большинство сил, наблюдающихся в макроскопич. явлениях: сила трения, сила упругости и др. Свойства различных агрегатных состояний вещества (кристаллов, аморфных тел, жидкостей, газов, плазмы), хим. превращения, процессы излучения, распространения и поглощения электромагнитных волн определяются Э. в. В детекторах частиц высокой энергии используется явление ионизации атомов вещества электрич. полем пролетающих частиц. Процессы расщепления ядер фотонами, реакции фоторождения мезонов, радиац. (с испусканием фотонов) распады элементарных частиц и возбуждённых состояний ядер, упругое и неупругое рассеяние электронов, позитронов и мюонов и т. п. обусловлены Э. в. Проявления Э. в. широко используются в электротехнике, радиотехнике, электронике, оптике, квантовой электронике.

Т. о., Э. в. ответственно за подавляющее большинство явлений окружающего нас мира. Явления, в к-рых участвуют слабые, медленно меняющиеся электромагнитные поля (hш<<E, где ш - характерная круговая частота изменения поля, h - постоянная Планка, Е - энергия поля), управляются законами классич. электродинамики, к-рая описывается Максвелла уравнениями. Для сильных или быстро меняющихся полей (hш = Е) существенны квантовые эффекты. Кванты поля электромагнитного излучения (фотоны, или у - кванты), характеризующие корпускулярные свойства электромагнитного поля, имеют энергию Е = hш,

импульс
30-05-1.jpg

(и - единичный вектор в направлении распространения электромагнитной волны, с - скорость света), спин J = 1 и отрицат. зарядовую чётность (чётность относительно операции зарядового сопряжения). Взаимодействия между фотонами у, электронами (е-), позитронами (е+) и мюонами (м + , м-) описываются ур-ниями квантовой электродинамики, к-рая является наиболее последоват. образцом квантовой теории поля. При Э. в. адронов (сильно взаимодействующих частиц) и атомных ядер существенную роль играет сильное взаимодействие, теория к-рого пока полностью не разработана.

Константой Э. в. в квантовых явлениях служит элементарный электрический заряд е=4,8*10-'° ед. заряда СГСЭ; интенсивность электромагнитных процессов в микромире пропорциональна безразмерному параметру а = е2/hc= 1/137, наз. постоянной тонкой структуры; более точное значение (на 1976): а-1 = = 137,035987(23).

Характерные черты Э. в. Среди др. типов взаимодействий Э. в. занимает промежуточное положение как по "силе" и характерным временам протекания процессов, так и по числу законов сохранения. Отношение безразмерных параметров, пропорциональных квадратам констант сильного, электромагнитного, слабого и гравитационного взаимодействий и характеризующих "силу" взаимодействия протона с протоном при энергии ~ 1 Гэв в системе их центра масс, составляет по порядку величин 1:10-2:10-10:10-38. Характерные времена электромагнитных распадов элементарных частиц и возбуждённых состояний ядер (10-12- 10-21сех) значительно превосходят "ядерные" времена (10-22- 10-24 сек) и много меньше времён распадов, обусловленных слабым взаимодействием (103- 10-11сек). Помимо строгих законов сохранения, справедливых для всех типов взаимодействий (энергии, импульса, момента количества движения, электрич. заряда и др.), при Э. в., в отличие от слабых взаимодействий,сохраняется пространств. чётность, зарядовая чётность и странность. С хорошей степенью точности установлено, что Э. в. инвариантно по отношению к обращению времени. Э. в. адронов нарушает присущие сильному взаимодействию законы сохранения изотопического спина и G-чётности, при этом изотопич. спин адронов может измениться при испускании или поглощении фотона не более чем на 1 (см., напр., Пи-мезоны). Унитарная симметрия адронов (5и(3)-симметрия; см. Элементарные частицы) приводит к определённым соотношениям между электромагнитными характеристиками (напр., магнитными моментами) частиц, принадлежащих к одному и тому же унитарному мультиплету.

Законы сохранения и свойства фотонов в значит, степени определяют специфич. черты Э. в. Так, равенство нулю массы покоя фотона обусловливает дальнодействующий характер Э. в. между заряженными частицами, а его отрицат. зарядовая чётность - возможность радиац. распада абсолютно нейтральных частиц или связанных систем частиц [т. е. частиц (систем), тождественных своим античастицам}, обладающих положит, зарядовой чётностью,- л°-мезона, парапозитрония (см. Позитроний) лишь на чётное число фотонов. Возможность описания (в соответствующем пределе) Э. в. в рамках классической (а не только квантовой) физики и его макроскопич. проявления обусловлены дальнодейству-ющим характером Э. в. и тем, что фотоны подчиняются Базе - Эйнштейна статистике. Малая величина а определяет малость сечений электромагнитных процессов с участием адронов по сравнению с сечениями аналогичных процессов, протекающих за счёт сильных взаимодействий; напр., сечение рассеяния фотона с энергией 320 Мэв на протоне составляет ок. 2*10-30 см2, что примерно в 105 раз меньше сечения рассеяния п+-мезона на протоне при соответствующей полной энергии сталкивающихся частиц в системе их центра масс.

Тот факт, что электрич. заряд определяет "силу" взаимодействия и в то же время является сохраняющейся величиной - уникальное свойство Э. в.; вследствие этого Э. в. зависят только от электрич. заряда частиц и не зависят от типа частиц или электромагнитных процессов. При описании электромагнитного поля 4-мерным вектором-потенциалом Aм(м = = 0,1,2,3) [А(ф, А), А - векторный, ф - скалярный потенциалы ] плотность лагранжиана L Э. в. поля с зарядом записывается в виде скалярного произведения:
30-05-2.jpg

где: jм - 4-мерный вектор плотности электрич. тока: j = (cp,j), j - плотность тока, р - плотность заряда. При градиентном преобразовании вектор-потенциала, к-рое наз. также калибровочным преобразованием (2-го рода):
30-05-3.jpg

где f(x, t) - произвольная функция координат х и времени t, наблюдаемые физ. величины (напряжённости полей, вероятности электромагнитных процессов и т. п.) остаются неизменными. Это свойство, специфич. для Э. в., получило назв. принципа калибровочной инвариантности - одного из принципов симметрии в природе (см. Симметрии в физике), выражающего в наиболее общей форме факт существования электромагнитного поля (фотона) и Э. в. Обобщение калибровочной инвариантности на слабые взаимодействия позволило сформулировать единую теорию слабых и электромагнитных взаимодействий лептонов (см. Слабые взаимодействия).

Эффекты квантовой электродинамики. К ним относятся рассеяние фотонов на электронах (Комптона эффект), тормозное излучение, фоторождение пар е+е-или м+м- на кулоновском поле ядер, сдвиг уровней энергии атомов из-за поляризации электрон-позитронного вакуума (см. Вакуум физический) и др. эффекты, в к-рых можно пренебречь структурой заряда (его отличием от точечнос-ти) при взаимодействии с ним электромагнитного поля. Развитая для описания атомных явлений квантовая электродинамика оказалась справедливой для значительно меньших, чем атомные, расстояний. Изучение рассеяния электронов друг на друге и аннигиляции е++ е- = м+м-при больших энергиях сталкивающихся частиц (до ~ 6 Гэв в системе центра масс), фоторождения пар е+ е-+м- с большими относит, импульсами, а также прецизионные измерения уровней энергии электронов в атомах и аномальных магнитных моментов электрона и мюона установили справедливость квантовой электродинамики вплоть до очень малых расстояний: ~ 10-15 см. Её предсказания с высокой степенью точности согласуются с эксперимент, данными. Так, не найдено расхождения между теоретич. и эксперимент, значениями магнитного момента мюона на уровне 10-7%.

Характерной чертой электродинамич. процессов при высоких энергиях Е(Е" >>mс2, где т - масса электрона или мюона) является острая направленность вперёд угловых распределений частиц (у, е± , м*) - продуктов процессов: большая их часть вылетает в пределах угла в ;V <= mc2/E относительно направления налетающих частиц.

Осн. вычислит, метод квантовой электродинамики - теория возмущений: благодаря слабости Э. в. матрицу рассеяния процессов с участием электромагнитного поля можно разложить в ряд по степеням малого параметра ее и при вычислениях ограничиться рассмотрением небольшого числа первых членов этого ряда (обычно не более четырёх).

В диаграммной технике теории возмущений (см. Фейнмана диаграммы) простейший процесс квантовой электродинамики - взаимодействие фотона с бесструктурной (точечной) заряж. частицей входит как составной элемент в любой электродинамич. процесс. Из-за малости а процессы с участием большого числа таких взаимодействий менее вероятны. Однако они доступны наблюдению и проявляются в т. н. радиационных поправках, в эффектах поляризации электрон-позитронного вакуума, в многофотонных процессах. В частности, поляризация вакуума приводит к рассеянию света на свете (рис. 1, а) - эффекту, к-рый отсутствует в классич. электродинамике; этот эффект наблюдается при рассеянии фотонов на кулоновском поле тяжёлого ядра (рис. 1, б).

В характере Э. в. для электронов (позитронов) и для мюонов не обнаружено отличия несмотря на значит, разницу в их массах; это легло в основу т. н. м-е-универсальности, пока не получившей теоретич. объяснения.

Э. в. адронов и атомных ядер. В электромагнитных процессах с участием адронов (фоторождении мезонов, рассеянии электронов и мюонов на протонах н ядрах, аннигиляции пары е+ е~ в адроны и др.) один из объектов взаимодействия - электромагнитное поле - хорошо изучен. Это делает Э. в. исключительно эффективным инструментом исследования строения адронов и природы сильных взаимодействий.

Сильные взаимодействия, как уже упоминалось, играют важную роль в электромагнитных процессах с участием адронов. Так, резонансные состояния адронов (резонансы) могут возбуждаться фотонами и ярко проявляются, напр., в полных сечениях поглощения фотонов протонами с образованием адронов (рис. 2). Электромагнитные свойства и электромагнитная структура адронов (магнитные моменты, поляризуемости, распределения зарядов и токов) обусловлены "облаком" виртуальных частиц (преим. я-мезонов), испускаемых адронами. Напр., среднеквадратичный радиус распределения заряда в протоне определяется размерами этого "облака" и составляет ~0,8* 10-i3(см. Формфактор). Вместе со слабыми взаимодействиями Э. в. ответственны за различие масс заряженных и нейтральных .частиц в изотопич. мультиплетах (напр., п и р, л° и п). Короткодействующий характер сильных взаимодействий определяет при энергиях E<hc/R(R - размер адронной системы) участие в реакциях лишь низших мультипольных моментов фотона и, как следствие этого, плавную зависимость дифференц. сечений от углов. При высоких энергиях (Е> 2 Гэв) угловые и энергетич. зависимости характеристик (сечений, поляризаций и др.) процессов Э. в. адронов и чисто адронных процессов схожи [на рис. 2 о(ур) при Е> 2 Гэв слабо зависит от энергии, что характерно для полных сечений взаимодействия адронов].

Это сходство легло в основу модели векторной доминантности, согласно к-рой фотон взаимодействует с адронами, предварительно перейдя в адронное состояние- векторные мезоны р°, ш, ф и др. Возможность такого перехода ярко иллюстрируется резонансной зависимостью от энергии сечения процесса е+ + е-= = К+ + К- ,обусловленной превращением виртуального фотона промежуточного состояния в векторный ф-мезон и его последующим распадом на пару К-мезонов (рис. 3, б). Виртуальный фотон характеризуется отличным от 0 значением квадрата 4-мерного импульса q2 = E222 <> <>0, где Я, р - энергия и трёхмерный импульс фотона (для реального фотона q2 = 0). Напр., для виртуального фотона, которым обмениваются электрон и протон при рассеянии, q2 = -(4ЕЕ'/с2)* * sin2 (v/2), где Е, Е' - энергии электрона до и после рассеяния (для случая Е, Е'>> >>mс2), в - угол рассеяния в лабораторной системе отсчёта. Эксперимент показал удовлетворит, применимость модели векторной доминантности для описания электромагнитных явлений с участием реальных фотонов и виртуальных фотонов с |q2|<.2(Гэв/с)2. В частности, в сечении аннигиляции е+ + е- = м+ - при энергии в системе центра масс 1019,5 Мэв наблюдаются отклонения от предсказаний квантовой электродинамики, к-рые вытекают из данной модели (обусловлены образованием ср-мезона в промежуточном состоянии; см. рис. 3, а). (Согласно квантовой электродинамике, этот процесс происходит посредством превращения пары е+е- в виртуальный фотон у, а у - в пару м+м-.)

Однако модель векторной доминантности не описывает Э. в. адронов при больших |q2| [|q2| > 2(Гэв/с)г]. Так, измеренное сечение упругого рассеяния электронов на протонах, к-рое зависит от пространств, распределения электрич. зарядов и токов внутри нуклона, спадает с ростом |q2| значительно быстрее, чем предсказывается моделью. Напротив, сечение глубоко неупругого рассеяния электронов (процесса е- + р = е-+ адроны при больших передачах энергии и импульса адронной системе) падает медленнее; при этом
с увеличением полной энергии W адронов в конечном состоянии характер рассеяния приближается к характеру рассеяния на точечной частице. Последнее обстоятельство привело к формулировке т. н. партонной модели адронов; согласно этой модели адроны состоят из частей (партонов), к-рые при взаимодействии с фотонами проявляют себя как бесструктурные точечные частицы. Отождествление пар-тонов с кварками оказалось плодотворным для понимания глубоко неупругого рассеяния.

Несмотря на то, что Э. в. - наиболее полно изученный тип фундаментального взаимодействия, его продолжают интенсивно исследовать во мн. науч. центрах. Это обусловлено как исключит, многообразием микроскопич. и макроскопич. проявлений Э. в., имеющих прикладное значение, так и уникальной ролью электромагнитного поля (как хорошо изученного объекта) в исследовании строения вещества на предельно малых расстояниях, в получении сведений о др. типах взаимодействий, в выявлении новых законов и принципов симметрии в природе. Эти фундаментальные исследования ведутся с использованием прецизионных методов атомной и ядерной спектроскопии, с помощью полученных на ускорителях интенсивных пучков фотонов, электронов, мюонов высокой энергии, в космических лучах.

Лит.: Электромагнитные взаимодействия и структура элементарных частиц, пер. с англ., М., 1969; Ахиезер А. И., Бересте ц-кий В. Б., Квантовая электродинамика, 3 изд., М., 1969; Ф е л ь д Б., Модели элементарных частиц, пер. с англ., М., 1971; Фейнман Р., Взаимодействие фотонов с адронами, пер. с англ., М., 1975; Ваинберг С., Свет как фундаментальная частица, пер. с англ., "Успехи физических наук", 1976, т. 120, в. 4. А. И. Лебедев.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Существование Э. в. было предсказано М. Фарадеем в 1832. Дж. Максвелл в 1865 теоретически показал, что электромагнитные колебания не остаются локализованными в пространстве, а распространяются в вакууме со скоростью света с во все стороны от источника. Из того обстоятельства, что скорость распространения Э. в. в вакууме равна скорости света, Максвелл сделал вывод, что свет представляет собой Э. в. В 1888 максвелловская теория Э. в. получила подтверждение в опытах Г. Герца, что сыграло решающую роль для её утверждения.

Теория Максвелла позволила единым образом подойти к описанию радиоволн, света, рентгеновских лучей и гамма-излучения. Оказалось, что это не излучения различной природы, а Э. в. с различной длиной волны. Частота со колебаний электрич. Е и магнитного Н полей связана с длиной волны Л соотношением: Л = 2лс/шо. Радиоволны, рентгеновские лучи и у-излучение находят своё место в единой шкале Э. в. (рис.), причём между соседними диапазонами шкалы Э. в. нет резкой границы.

Особенности Э. в., законы их возбуждения и распространения описываются Максвелла уравнениями. Если в какой-то области пространства существуют электрич. заряды е и токи /, то изменение их со временем t приводит к излучению Э. в. На скорость распространения Э. в. существенно влияет среда, в к-рой они распространяются. Э. в. могут испытывать преломление, в реальных средах имеет место дисперсия волн, вблизи неоднородностей наблюдаются дифракция волн, интерференция волн (прямой и отражённой), полное внутр. отражение и др. явления, свойственные волнам любой природы. Пространств, распределение электромагнитных полей, временные зависимости E(t) и H(t), определяющие тип волн (плоские, сферические и др.), вид поляризации (см. Поляризация волн) и др. особенности Э. в. задаются, с одной стороны, характером источника излучения, и с другой - свойствами среды, в к-рой они распространяются. В случае однородной и изотропной среды, вдали от зарядов и токов, создающих электромагнитное поле, ур-ния Максвелла, приводят к волновым ур-ниям:
30-05-4.jpg

описывающим распространение плоских монохроматич. Э. в.:
30-05-5.jpg

Здесь е - диэлектрическая проницаемость, ц - магнитная проницаемость среды, Ео и Но - амплитуды колебаний электрич. и магнитных полей, со - частота этих колебаний, ф - произвольный сдвиг фазы, k - волновой вектор, r - радиус-вектор точки; V2 - Лапласа оператор.

Если среда неоднородна или содержит поверхности, на к-рых изменяются её электрич. либо магнитные свойства, или если в пространстве имеются проводники, то тип возбуждаемых и распространяющихся Э. в. может существенно отличаться от плоской линейно-поляризованной волны. Э. в. могут распространяться вдоль направляющих поверхностей (п о-верхностные волны), в передающих линиях и в полостях, образованных хорошо проводящими стенками (см. Радиоволновод, Световод, Квазиоптика).

Характер изменения во времени Е и Н определяется законом изменения тока / и зарядов е, возбуждающих Э. в. Однако форма волны в общем случае не следует l(t) или e(t). Она в точности повторяет форму тока только в случае, если и Э. в. распространяются в линейной среде (электрич. и магнитные свойства к-рой не зависят от Я и Н). Простейший случай - возбуждение и распространение Э. в. в однородном изотропном пространстве с помощью диполя Герца (отрезка провода длиной / <<Л, по к-рому протекает ток I - I0 sin шt). На расстоянии от диполя много большем \ образуется волновая зона (зона излучения), где распространяются сферич. Э. в. Они поперечные и линейно поляризованы. В случае анизотропии среды могут возникнуть изменения поляризации (см. Излучение и приём радиоволн).

В изотропном пространстве скорость распространения гармонич. Э. в., т. е. фазовая скорость
30-05-6.jpg

При наличии дисперсии скорость переноса энергии с (групповая скорость) может отличаться от v. Плотность потока энергии S, переносимой Э. в., определяется Пойн-тинга вектором: S = (с/4л) [ЕН]. Т. к. в изотропной среде векторы Е а Н ч волновой вектор образуют правовинтовую систему, то S совпадает с направлением распространения Э. в. В анизотропной среде (в т. ч. вблизи проводящих поверхностей) S может не совпадать с направлением распространения Э. в.

Появление квантовых генераторов, в частности лазеров, позволило достичь напряжённости электрич. поля в Э. в., сравнимых с внутриатомными полями. Это привело к развитию нелинейной теории Э. в. При распространении Э. в. в нелинейной среде (е и ц зависят от Е и Н) её форма изменяется. Если дисперсия мала, то по мере распространения Э. в. они обогащаются т. н. высшими гармониками и их форма постепенно искажается. Напр., после прохождения синусоидальной Э. в. характерного пути (величина к-poro определяется степенью нелинейности среды) может сформироваться ударная волна, характеризующаяся резкими изменениями Е и Н (разрывы) с их последующим плавным возвращением к первоначальным величинам. Ударная Э. в. далее распространяется без существ, изменений формы; сглаживание резких изменений обусловлено гл. обр. затуханием. Большинство нелинейных сред, в к-рых Э. в. распространяются без сильнсго поглощения, обладает значит, дисперсией, препятствующей образованию ударных Э. в. Поэтому образование ударных волн возможно лишь в диапазоне Л от неск. см до длинных волн. При наличии дисперсии в нелинейной среде возникающие высшие гармоники распространяются с различной скоростью и существенного искажения формы исходной волны не происходит. Образование интенсивных гармоник и взаимодействие их с исходной волной может иметь место лишь при специально подобранных законах дисперсии (см. Нелинейная оптика, Параметрические генераторы света).

Э. в. различных диапазонов Л характеризуются различными способами возбуждения и регистрации, по-разному взаимодействуют с веществом и т. п. Процессы излучения и поглощения Э. в. от самых длинных волн до инфракрасного излучения достаточно полно описываются соотношениями электродинамики. На более высоких частотах доминируют процессы, имеющие существенно квантовую природу, а в оптич. диапазоне и тем более в диапазонах рентгеновских и у-лучей излучение и поглощение Э. в. могут быть описаны только на основе представлений о дискретности этих процессов.

Квантовая теория поля внесла существенные дополнения и в само представление об Э. в. Во многих случаях электромагнитное излучение ведёт себя не как набор монохроматич. Э. в. с частотой со и волновым вектором k, а как поток квазичастиц - фотонов с энергией & = и импульсом р = hш/c = hk (h - Планка постоянная). Волновые свойства проявляются, напр., в явлениях дифракции и интерференции, корпускулярные - в фотоэффекте и Комптона эффекте.

Лит.: Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976; Л а н д а у Л. Д., Л и ф ш и ц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); и х ж е, Электродинамика сплошных сред, М., 1959; Ландсберг Г. С., Оптика, 5 изд., М., 1976. В. В. Мшулин.

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ, взаимосвязанные колебания электрического (Е) и магнитного (Н) полей, составляющих единое электромагнитное поле. Распространение Э. к. происходит в виде электромагнитных волн, скорость к-рых в вакууме равна скорости света с, а длина волны Л связана с периодом Т и частотой ш соотношением: Л = сТ = = 2лс/ш. По своей природе Э. к. представляют собой совокупность фотонов, и только при большом числе фотонов их можно рассматривать как непрерывный процесс.

Различают вынужденные Э. к., поддерживаемые внеш. источниками, и собственные Э. к., существующие и без них. В неограниченном пространстве или в системах с потерями энергии (диссипативных) возможны собственные Э. к. с непрерывным спектром частот. Пространственно огранич. консервативные (без потерь энергии) системы имеют дискретный спектр собственных частот, причём каждой частоте соответствует одно или неск. независимых колебаний (мод). Напр., между двумя отражающими плоскостями, отстоящими друг от друга на расстояние /, возможны только синусоидальные Э. к. с частотами шп = = плс/l, где п - целое число. Собств. моды имеют вид синусоидальных стоячих волн, в к-рых колебания векторов Е а Н сдвинуты во времени на Т/4, а пространств, распределения их амплитуд смещены на Я/4, так что максимумы (пучности) Е совпадают с нулями (узлами) Н и наоборот. В таких Э. к. энергия в среднем не переносится в пространстве, но внутри каждого четвертьволнового участка между узлами полей происходит независимая периодич. перекачка электрич. энергии в магнитную и обратно.

Представление Э. к. в виде суперпозиции мод с дискретным или непрерывным спектром допустимо для любой сложной системы проводников и диэлектриков (см. Радиоволновод, Объёмный резонатор, Открытый резонатор), если поля, токи, заряды в них связаны между собой линейными соотношениями. В квазистационарных системах, размеры к-рых значительно меньше длины волны, области, где преобладают электрические или магнитные поля, могут быть пространственно разделены и сосредоточены в отдельных элементах: Е - в ёмкостях С, Н - в индуктивностях L. Типичный пример такой системы с сосредоточенными параметрами - колебательный контур, где происходят колебания зарядов на обкладках конденсаторов и токов в катушках самоиндукции. Э. к. в системах с распределёнными параметрами L и С, имеющие дискретный спектр собственных частот, могут быть представлены как Э. к. в связанных колебат. контурах (электромагнитных осцилляторах), число к-рых равно числу мод.

В средах Э. к. взаимодействуют со свободными и связанными заряж. частицами (электронами, ионами), создавая индуцированные токи. Токи проводимости обусловливают потери энергии и затухание Э. к.; токи, обусловленные поляризацией и намагниченностью среды, определяют значения её диэлектрической проницаемости и магнитной проницаемости, а также скорость распространения в ней электромагнитных волн и спектр собственных частот Э. к. Если индуцированные токи зависят от Е и Н нелинейно, то период, форма и др. характеристики Э. к. зависят от их амплитуд (см. Нелинейные колебания); при этом принцип суперпозиции недействителен, и может происходить перекачка энергии Э. к. от одних частот к другим. На этом основаны принципы работы большинства генераторов, усилителей и преобразователей частоты Э. к. (см. Генерирование электрических колебаний, Автоколебания). Возбуждение Э. к. в устройствах с сосредоточенными параметрами, как правило, осуществляется путем прямого подключения к ним генераторов, в высокочастотных устройствах с распределёнными параметрами - путём возбуждения Э. к. при помощи различных элементов связи (вибраторов, петель связи, рамок, отверстий и др.), в оптич. устройствах - с применением линз, призм, отражающих полупрозрачных зеркал и т. д.

Лит.: Горелик Г. С.,Колебания и волны, 2 изд., М., 1959; Андронов А. А., В и т т А. А., X а и к и н С. Э., Теория колебаний, 2 изд., М., 1959; Парселл Э., Электричество и магнетизм, пер. с англ., 2 изд., М., 1975 (Берклеевский курс физики, т. 2); Крауфорд Ф., Волны, пер. с англ., 2 изд., М., 1976 (Берклеевский курс физики, т. 3).

М. А. Миллер, Л. А. Островский.

ЭЛЕКТРОМАГНИТНЫЙ ВЫКЛЮЧАТЕЛЬ, выключатель электрический, служащий для отключения высоковольтных цепей под нагрузкой в нормальных и вынужденных режимах работы; принципиально отличается от выключателей др. систем тем, что гашение электрич. дуги, возникающей между расходящимися в процессе отключения цепи контактами выключателя, осуществляется непосредственно в возд. среде т. н. электромагнитным дутьём в дугогасителъном устройстве. Дуга затягивается в камеру дугогасит. устройства мощным магнитным полем, создаваемым электромагнитами, в обмотках к-рых протекает отключаемый ток. Обмотки электромагнитов имеют такую полярность, при к-рой создаваемое магнитное поле затягивает дугу в дугогасит. камеру (камеры), где дуга растягивается и охлаждается, её сопротивление резко увеличивается и она гаснет. Дугогасит. камеры выполняются из жаростойких материалов, обладающих высокой диэлектрич. прочностью, теплопроводностью и теплоёмкостью. В Э. в. перем. тока для повышения надёжности работы обычно предусматривается возд. поддув, к-рый ускоряет перемещение дуги в камеру. Э. в. применяют обычно в сетях на напряжение 6-10 кв.

Лит.: Б а б и к о в М. А., Электрические аппараты, ч. 3, М.- Л., 1963; Б р о н-ш т е и н А. М., К у р и ц ы н В. П., У л и с-сова И. Н., Электромагнитные выключатели и опыт их эксплуатации, "Электричество", 1971, № 4; Б ы к о в Е. И., К о л у з а е в А. М., Электромагнитные выключатели ВЭМ-6 и ВЭМ-10, М., 1973.

Р. Р. Мамашин.

ЭЛЕКТРОМАГНИТНЫЙ НАСОС, 1) насос поршневого типа или диафрагмовый насос, у к-рого поступательно-возвратное движение рабочего органа осуществляется стальным сердечником, вставленным в соленоид, подключённый к источнику электроэнергии. 2) То же, что магнитогидродинамический насос.

ЭЛЕКТРОМАГНИТНЫЙ ПРИБОР, измерительный прибор, принцип действия к-рого основан на взаимодействии магнитного поля, пропорционального измеряемой величине, с сердечником, выполненным из ферромагнитного материала. Осн. элементы Э. п.: измерит, схема, преобразующая измеряемую величину в постоянный или переменный ток, и измерит, механизм электромагнитной системы (рис.). Электрич. ток в катушке электромагнитной системы создаёт электромагнитное поле, втягивающее сердечник в катушку, что приводит к возникновению на оси вращающего момента, пропорционального квадрату силы тока, протекающего по катушке. В результате действия на ось пружины создаётся момент, противодействующий вращающему моменту н пропорциональный углу поворота оси. При взаимодействии моментов ось и связанная с ней стрелка поворачиваются на угол, пропорциональный квадрату измеряемой величины. При равенстве моментов стрелка останавливается. Выпускаются электромагнитные амперметры и вольтметры для измерений гл. обр. в цепях переменного тока частотой 50 гц. В электромагнитном амперметре катушка измерит, механизма включается последовательно в цепь измеряемого тока, в вольтметре параллельно. Электромагнитные измерит, механизмы применяют также в логометрах. Наиболее распространены щитовые приборы классов точности 1,5 и 2,5, хотя существуют приборы классов 0,5 и даже 0,1 с рабочей частотой до 800 гц.

Лит.: Электрические измерения, под ред. Е. Г. Шрамкова, М., 1972; Электрические измерения, под ред. А. В. Фремке, 14 изд., Л., 1973. Н. Н. Вострокнутов.

ЭЛЕКТРОМАГНИТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, см. Электрический ракетный двигатель.

ЭЛЕКТРОМАШИННЫЙ ДИНАМОМЕТР, устройство для измерения вращающих моментов электродвигателей. Э. д. используют при стендовых испытаниях двигателей для снятия механич. или электромеханич. характеристик. Э. д. представляет собой электрическую машину, работающую в генераторном режиме и механически связанную с испытуемым двигателем. Наиболее часто в качестве Э. д. используют генератор постоянного тока. Момент, развиваемый электродвигателем, находят по формуле:
30-05-7.jpg

где U - напряжение на зажимах гене ратора в в; I - ток в обмотке возбужде ния в а; п - частота вращения в об/мин т) - кпд генератора. Изменение момент: достигается регулированием нагрузочноп сопротивления и тока в обмотке возбуж дения генератора. Э. д. применяют npи испытании мощных тяговых машин. Мо менты электродвигателей малой мощ ности иногда определяют на более npocTON Э. д., представляющем собой диск из ферромагнитного материала, к-рый насаживают на вал электродвигателя и электромагнит постоянного тока с противовесом. При вращении диска создаётся тормозной момент в результате взаимодействия вихревых токов в диске < магнитным полем электромагнита. Угол поворота электромагнита с противовесом пропорционален измеряемому моменту

М. И. Озеров

ЭЛЕКТРОМАШИННЫЙ УСИЛИТЕЛЬ (ЭМУ), электрическая машина, предназначенная для усиления мощности подаваемого на обмотку возбуждения сигнале за счёт энергии первичного двигателя (обычно электрического). ЭМУ примениют в системах автоматич. управления и ре гулирования; выпускаются на мощности от долей вт до десятков квт с коэфф усиления (отношение мощности на выходе к мощности на входе) 104_ 105. Небольшое изменение мощности подводимой в цепь возбуждения, вызывает во много раз большее изменение мощности, отдаваемой ЭМУ. Различают ЭМУ продольного поля (с одной ступенью усиления) и ЭМУ поперечногс поля (с двумя ступенями). Наиболее распространены ЭМУ поперечного поля (рис.). Такой ЭМУ представляет собой генератор пост, тока, обычно двухполюсный с двумя парами щёток на коллекторе. На полюсах статора расположены одна или неск. обмоток возбуждения, чаще наз. обмотками управления (ОУ). При подаче в ОУ сигнала, подлежащего усилению, она создаёт магнитный поток Ф1, направленный вдоль оси d-d, В обмотке якоря наводится эдс, к-рая достигает наибольшего значения на щётках а - а и равна нулю на щётках b - b. Т. к. якорь замкнут накоротко щётками а-а, то даже при незначнт. эдс в цепи (обмотке) якоря возникает достаточнс большой ток /а, обусловливающий увеличение мощности сигнала (первая ступень усиления). Этот ток создаёт сильное поперечное магнитное поле (магнитный поток Фаq). При вращении якоря в поперечном поле на щётках b-b, связанных с внеш. цепью, появляется напряжение U2. В результате этого во внеш. цепи возникает большой ток I2, обусловливающий большую выходную мощность (вторая ступень усиления). Дополнит. обмотка, наз. компенсационной, создаёт намагничивающую силу FKO, равную Fad, устраняя искажение сигнала.

Лит.: Горяинов Ф. А., Электромашинные усилители, М.- Л., 1962.

М. Д. Находкин.

ЭЛЕКТРОМЕГАФОН, электрич. мегафон; переносное устройство для звукоусиления. Содержит малочувствительный к акустическим шумам микрофон, усилитель электрических колебаний (в большинстве случаев транзисторный) и рупорный громкоговоритель с рукояткой, позволяющей держать его в руке. Микрофон (обычно укрепляемый на кожухе Э.) располагают так, чтобы со стороны громкоговорителя (в направлении излучения звука) он обладал наименьшей чувствительностью. С помощью удлинит, кабеля микрофон может быть отнесён от громкоговорителя на нек-рое расстояние (напр., когда громкоговоритель устанавливают на крыше автомобиля). Усилитель выполнен по схеме с отрицат. обратной связью и содержит мощный двухтактны; сконечный каскад. Питание усилителя производится от электрич. аккумуляторов или от малогабаритных элементов. В нек-рых Э. предусмотрена возможность перевода усилителя в режим генерации колебаний звуковой частоты, на основе к-рых вырабатываются тональные (звуковые) сигналы вызова. Масса Э. (включая устройство питания) ок. 1,5 кг; дальность действия 250 м и более. М. А. Сапожков.

ЭЛЕКТРОМЕТАЛЛУРГИЯ, область металлургии, охватывающая пром. способы получения металлов и сплавов с помощью электрич. тока. В Э. применяются электротермич. и электрохимич. процессы. Электротермич. процессы используются для извлечения металлов из руд и концентратов, производства и рафинирования чёрных и цветных металлов и сплавов на их основе (см. Электротермия). В этих процессах электрич. энергия является источником технологич. тепла. Электрохимич. процессы распространены в произ-ве чёрных и цветных металлов на основе электролиза водных растворов и расплавл. сред (см. Электрохимия). Здесь за счёт электрич. энергии осуществляются окислительно-восстановит, реакции на границах раздела фаз при прохождении тока через электролиты. Особое место в этих процессах занимает гальванотехника, в основе к-рой лежат электрохимич. процессы осаждения металлов на поверхность металлич. и неметаллич. изделий.

Электротермич. процессы охватывают плавку стали в дуговых и индукционных печах (см. Электросталеплавилъное производство), спецэлектрометаллургию, рудовосстановит. плавку, включающую произ-во ферросплавов и штейнов, выплавку чугуна в шахтных электропечах, получение никеля, олова и др. металлов.

Электродуговая плавка. Электросталь, предназначенная для дальнейшего передела, выплавляется гл. обр. в дуговых печах с основной футеровкой. Важные

преимущества этих печей перед др. сталеплавильными агрегатами (возможность нагрева металла до высоких темп-р за счёт электрич. дуги, восстановит, атмосфера в печи, меньший угар легирующих элементов, высокоосновные шлаки, обеспечивающие существ, снижение содержания серы) предопределили их использование для произ-ва легированных высококачеств. сталей - коррозионностойких, инструментальных (в т. ч. быстрорежущих), конструкционных, электротехнич., жаропрочных и др., а также сплавов на никелевой основе. Мировая тенденция развития электродуговой плавки - увеличение ёмкости единичного агрегата до 200-400 т, удельной мощности трансформатора до 500-600 и более ква/т, специализация агрегатов (в одних - только расплавление, в других - рафинирование и легирование), высокий уровень автоматизации и применение ЭВМ для программного управления плаысой. В печах повышенной мощности экономически целесообразно плавить не только легированную, но и рядовую углеродистую сталь. В развитых капиталистич. странах доля углеродистой стали от общего объёма электростали, выплавляемой в электропечах, составляет 50% и более. В СССР в электропечах выплавляется ~ 80% легированного металла.

Для выплавки спец. сталей и сплавов получают распространение плазменно-дуговые печи с основным керамич. тиглем (ёмкостью до 30 т), оборудованные плазмотронами постоянного и переменного тока (см. Плазменная металлургия). Дуговые электропечи с кислой футеровкой используют для плавки металла, предназначенного для стального литья. Кислый процесс в целом более высокопроизводителен, чем основной, из-за кратковременности плавки благодаря меньшей продолжительности окислительного и восстановит, периодов. Кислая сталь дешевле основной вследствие меньшего расхода электроэнергии, электродов, лучшей стойкости футеровки, меньшего расхода раскислителей и возможности осуществления кремневосстановит. процесса. Дуговые печи ёмкостью до 100 т широко применяются также для плавки чугуна в чугунолитейных цехах.

Индукционная плавка. Плавка стали в индукционной печи, осуществляемая в основном методом переплава, сводится, как правило, к расплавлению шихты, раскислению металла и выпуску. Это обусловливает высокие требования к шихтовым материалам по содержанию вредных примесей (P,S). Выбор тигля (основной или кислый) определяется свойствами металла. Чтобы кремнезём футеровки не восстанавливался в процессе плавки, стали и сплавы с повышенным содержанием Mn, Ti, Al выплавляют в основном тигле. Существ, недостаток индукционной плавки - холодные шлаки, к-рые нагреваются только от металла. В ряде конструкций этот недостаток устраняется путём плазменного нагрева поверхности металл-шлак, что позволяет также значительно ускорить расплавление шихты. В вакуумных индукционных печах выплавляют чистые металлы, стали и сплавы ответств. назначения (см. Вакуумная плавка). Ёмкость существующих печей от неск. кг до десятков т. Вакуумную индукционную плавку интенсифицируют продувкой инертными (Аг, Не) и активными (СО, СН4) газами, электромагнитным перемешиванием металла в тигле, продувкой металле, шлакообразующими порошками.

Спецэлектрометаллургия охватывает новые процессы плавки и рафинирования металлов и сплавов, получившие развитие в 50-60-х гг. 20 в. для удовлетворения потребностей совр. техники (космической, реактивной, атомной, химич. машиностроения и др.) в конструкц. материалах с высокими механич. свойствами, жаропрочностью, коррозионной стойкостью и т. д. Спецэлектрометаллургия включает вакуумную дуговую плавку (см. Дуговая вакуумная печь), электроннолучевую плавку, электрошлаковый переплав и плазменно-дуговую плавку. Этими методами переплавляют стали и сплавы ответств. назначения, тугоплавкие металлы - вольфрам, молибден, ниобий и их сплавы, высокореакционные металлы - титан, ванадий, цирконий, сплавы на их основе и др. Вакуумная дуговая плавка была предложена в 1905 В. фон Больтоном (Германия); в пром. масштабах этот метод впервые использован для плавки титана В. Кроллом (США) в 1940. Метод электрошлакового переплава разработан в 1952-53 в Ин-те электросварки им. Е. О. Патона АН УССР. Для получения сталей и сплавов на никелевой основе особо ответств. назначения применяют различные варианты дуплекс-процессов, важнейший из К-рых - сочетание вакуумной индукционной плавки и вакуумно-дугового переплава. Особое место в спецэлектрометаллургии занимает вакуумная гарнисажная плавка (см. Гарнисаж), в к-рой источниками тепла служат электрич. дуга, электронный луч, плазма. В этих печах, применяемых для высокоактивных и тугоплавких металлов (W, Мо и др. и сплавы на их основе), порция жидкого металла в водоохлаждаемом тигле с гарнисажем используется для получения слитков и фасонных отливок.

Рудовосстановительная плавка включает произ-во ферросплавов, продуктов цветной металлургии - медных и никелевых штейнов, свинца, цинка, титанистых шлаков и др. Процесс заключается в восстановлении природных руд и концентратов углеродом, кремнием и др. восстановителями при высоких темп-рах, создаваемых гл. обр. за счёт мощной электрич. дуги (см. Руднотермическая печь). Восстановит, процессы обычно являются непрерывными. По мере проплав-ления подготовленную шихту загружают в ванну, а получаемые продукты периодически выпускают из электропечи. Мощность таких печей достигает 100 Мва. В нек-рых странах (Швеция, Норвегия, Япония, Италия и др.) на основе рудовосстановит. плавки производится чугун в электродоменных печах или электродуговых бесшахтных печах.

Электрохимические процессы получения металлов. Г. Дэви в 1807 впервые применил электролиз для получения натрия и калия.

В кон. 70-х гг. 20 в. методом электролиза получают более 50 металлов, в т. ч. медь, никель, алюминий, магний, калий, кальций и др. Различают 2 типа электролитич. процессов. Первый связан с катодным осаждением металлов из растворов, полученных методами гидрометаллургии - выщелачиванием руд и концентратов; в этом случае восстановлению (отложению) на катоде металла из раствора отвечает реакция электрохимич. окисления аниона на нерастворимом аноде.

Второй тип процессов связан с электролитическим рафинированием металла из его сплава, из к-рого изготовляется растворимый анод. На первой стадии в результате электролитич. растворения анода металл переводится в раствор, на второй - он осаждается на катоде. Последовательность растворения металлов на аноде и осаждения на катоде определяется рядом напряжений. Однако в реальных условиях потенциалы выделения металлов существенно зависят от величины перенапряжения водорода на соответствующем металле. В пром. масштабах рафинируют цинк, марганец, никель, железо и др. металлы; алюминий, магний, калий и др. получают электролизом расплавл. солей при 700-1000 °С. Последний способ связан с большим расходом электроэнергии (15-20 тыс. квт*ч/т) по сравнению с электролизом водных растворов (до 10 тыс. квт*ч/т).

Лит.: Беляев А. И., Металлургия легких металлов, 6 изд., М., 1970; Зеликман А. Н., М е е р с о н Г. А., Металлургия редких металлов, М., 1973; Е д н е р а л Ф. П., Электрометаллургия стали и ферросплавов, 4 изд., М., 1977.

В. А. Григорян.

ЭЛЕКТРОМЕТР (от электро... и ...метр), прибор, предназначенный для измерения разностей электрич. потенциалов, небольших электрич. зарядов, очень малых токов (вплоть до 10-15а) и др. электрич. величин, когда необходимо обеспечить пренебрежимо малое потребление энергии измерительным прибором. Э. представляет собой электростатический прибор с тремя электродами, находящимися в общем случае под разными потенциалами. Наиболее распространены струнные и квадрантные Э., применяемые для измерения напряжения.

В наиболее простом струнном Э. измеряемое напряжение подаётся на платиновую нить (струну) и неподвижные электроды (рис. а,6). Под действием сил электрич. поля нить прогибается; перемещение нити, служащее мерой измеряемой величины, наблюдают в микроскоп, что обеспечивает достаточно высокую чувствительность прибора. Для повышения чувствительности струнного Э. на его неподвижные электроды накладывают дополнит, напряжение (50-100 в относительно земли) такого же рода (постоянное или переменное) и той же частоты, что и измеряемое (рис. в). Чувствительность струнного Э. достигает 300-500 мм на 1 в/л. Квадрантные Э. состоят из подвижной части в виде тонкой и лёгкой металлич. пластинки - бисектора, наз. обычно "бисквитом", и связанного с ним зеркала, подвешенных па кварцевой нити, и неподвижной части - цилиндрич. металлич. коробки, разрезанной на четыре равные части - квадранты. При наличии разности потенциалов на квадрантах между ними и бисектором возникают электростатич. силы взаимодействия, отклоняющие подвижную часть Э. в ту или др. сторону. По углу отклонения бисектора при известном его потенциале судят о величине разности потенциалов квадрантов; если же известна последняя, то можно определить потенциал бисектора. Чувствительность квадрантного Э. - до 5000 мм на 1 в/л. Разновидность квадрантного Э. - бинантный Э. (неподвижная часть такого Э. разрезана на две части - бинанты).

Лит.: Курс электрических измерений, под ред. В. Т. Прыткова и А. В. Талицкого, ч. 1, М.- Л., 1960; В е к с л е р М. С., Электростатические приборы, М.- Л., 1964; Основы электроизмерительной техники, под ред. М. И. Левина, М., 1972.

ЭЛЕКТРОМЕТРИЧЕСКАЯ ЛАМПА, приёмно-усилителъная лампа, используемая в радио- и электроизмерит. приборах для усиления и измерения малых токов (до 10-14 а) в цепях с очень высоким электрич. сопротивлением. Конструктивно Э. л. выполняется в виде триода (одинарного или двойного), тетрода, или пентода. Катод Э. л. обычно оксидный, прямого либо косвенного накала. Гл. особенность Э. л.- высокое входное сопротивление, определяемое требованием получения малых токов управляющей сетки при её отрицат. потенциале. Появление сеточного тока в Э. л. связано с конечным значением сопротивления электрич. изоляции сетки (сопротивлением утечки сетки); ионизацией остаточных газов в баллоне лампы; термоэлектронной эмиссией сетки; фотоэлектронной эмиссией с поверхности сетки, обусловленной внеш. освещением, тепловым излучением нагретого катода, мягкими рентгеновскими лучами, возникающими при торможении электронов на аноде. Используя различные конструктивно-технологич. меры (важнейшие из к-рых - снижение темп-ры катода до 750-800 К; уменьшение анодного напряжения до значений, меньших потенциала ионизации остаточных газов, обычно до 10- 12 в; уменьшение размеров управляющей сетки и обеспечение её высокой электрич. изоляции), сеточный ток Э. л., обусловленный указанными факторами (кроме последнего), можно снизить до 10-15 а и меньше. Однако получение малых сеточных токов при удовлетворит, значениях таких осн. параметров Э. л., как крутизна её сеточной характеристики и коэфф. усиления, затруднено гл. обр. из-за фотоэлектронной эмиссии, вызванной мягким рентгеновским излучением. Так, при сеточном токе 10-15а крутизна сеточной характеристики обычно не превышает 100-120мка/в, а коэфф. усиления- 1,5; у т. н. полуэлектрометрич. ламп, работающих при сеточном токе ок. 5-10-11а, эти параметры составляют соответственно 1 ма/в и 25-30. Диапазон измеряемых значений тока (отношение его предельных значений) у Э. л. обычно ок. 100; у разновидности полуэлектрометрич. лампы - т. н. логарифмич. Э. л. (с характеристикой, обеспечивающей получение на выходе сигнала, пропорционального логарифму входного тока) он может достигать 108.

Лит.: 3 а р у ц к и и Ю. Ф., Современные электрометрические лампы, их возможности и пути развития, "Электровакуумная техника", 1968, в. 45; Кауфман М. С., П а л а т о в К. И., Электронные приборы, 3 изд., М.. 1970. М. С. Кауфман.

ЭЛЕКТРОМЕХАНИЧЕСКАЯ ОБРАБОТКА, разновидность электрофизич. методов обработки. Основана на механич. ударном импульсном воздействии (ультразвуковая обработка) или на непосредственном преобразовании предварительно накопленной электрич. энергии в механич. работу деформации (магнитоимпульсная обработка). См. Электрофизические и электрохимические методы обработки.

ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ, устройство для преобразования механич. перемещений (колебаний) в изменение электрич. тока или напряжения (электрич. сигнал) и наоборот. Применяются гл. обр. как исполнит, устройства систем автоматич. регулирования (управления) и в качестве датчиков механич. перемещений в автоматике и измерит, технике. По принципу преобразования различают резистивные, электромагнитные, магнитоэлектрич., электростатич. Э. п.; по типу выходного сигнала - аналоговые и цифровые (с непрерывными и дискретными выходными сигналами). Для оценки Э. п. учитывают его статич. и динамич. характеристики, чувствительность (или коэфф. передачи) преобразования Е = &y/&x: (где &y - изменение выходной величины у при изменении входной величины х на &x), рабочий диапазон частот выходного сигнала, статич. ошибку (погрешность) сигнала, статич. ошибку (погрешность) преобразования. Примером Э. п. могут служить измерит, механизм магнитоэлектрического прибора, громкоговоритель, микрофон, пьезоэлектрический датчик.

Лит.: Электрические измерения неэлектрических величин, под ред. П. В. Новицкого, 5 изд.. Л., 1975.

ЭЛЕКТРОМИОГРАФИЯ {от электро..., мио... и ...графия), метод исследования биоэлектрич. потенциалов, возникающих в скелетных мышцах животных и человека при возбуждении мышечных волокон. У человека осуществлена впервые в 1907 нем. учёным Г. Пипером. Амплитуда колебаний потенциала мышцы обычно не превышает неск. милливольт, а их длительность - 20-25 мсек, поэтому Э. проводят с помощью усилителя и малоинерционного регистратора; кривая, записанная на фотобумаге, фотоплёнке и т. п., наз. электромиограммой (ЭМГ). В Э. могут быть выделены 3 осн. направления исследования. Первое из них - Э. с помощью введённых в мышцу игольчатых электродов, к-рые вследствие небольшой отводящей поверхности улавливают колебания потенциала, возникающие в отд. мышечных волог.чах или в группе мышечных волокон, пннер-вируемых одним мотонейроном. Это позволяет исследовать структуру и функцчго двигательных единиц. Второе направление - Э. с помощью накожных электродов, к-рые отводят т. н. суммарную ЭМГ, образующуюся в результате интерференции колебаний потенциала мн. двигательных единиц, находящихся в области отведения. Такая ЭМГ отражает процесс возбуждения мышцы как целого. Т. н. стимуляционная Э.- регистрация колебаний потенцала, возникающих в мышце при искусств, стимуляции нерва или органов чувств. Таким образом исследуется нервно-мышечная передача, рефлекторная деятельность двигат. аппарата, определяется скорость проведения возбуждения по нерву. Э. даёт возможность судить о состоянии и деятельности не только мышц, но и нервных центров, участвующих в осуществлении движений. Э. применяют в физиологии при изучении двигат. функции животных и особенно человека, а также в прикладных науках - физиологии труда и спорта, в инж. психологии (напр., при исследовании утомления, выработки двигательного навыка). Р. С. Персон. Э. как эффективный метод диагностики ряда нервно-мышечных заболеваний широко применяется в невропатологии и некоторых других областях медицины. Э. используется также для оценки функционального состояния двигат. аппарата при восстановлении нарушенной двигательной функции в ортопедии и протезировании.

Лит.: ПерсонР.С., Электромиография в исследованиях человека, М., 1969; Юсевич Ю. С., Очерки по клинической электромиографии, М., 1972; Байку ш е в Ст., М а н о в и ч 3. X., Новикова В. П., Стимуляционная электроннография и электронейрография в клинике нервных болезней, М., 1974; К о у э н X., Брумлик Дж., Руководство по электромиографии и электродиагностике, пер. с англ., М., 1975.

ЭЛЕКТРОМОБИЛЬ, автомобиль с тяговым электродвигателем, получающим питание от батареи аккумуляторов (БА), чаще всего свинцово-кислотных или железо-никелевых щелочных. В нач. 20 в. Э. использовались в Зап. Европе и США в качестве такси, почтовых фургонов, коммунальных машин, а также как легковые автомобили. Первый в России самодвижущийся экипаж был аккумуляторным (И. Романов, 1899). На Э. впервые была достигнута скорость 100 км/ч (К. Женатци, Франция, 1898). Достоинства Э.: бездымность, бесшумность, простота управления. Однако ограниченные скорость и запас хода из-за низкой энергоёмкости (около 20 вт*ч/кг) и большой массы БА сдерживали развитие Э. Начиная с 60-х гг. в связи с загрязнением воздуха и усилением шума от автомобилей с двигателями внутр. сгорания (ДВС) Э. вновь получают распространение на гор. транспорте, чему способствуют небольшой ср. суточный пробег автомобилей в городе (до 100 км), ограничение скорости до 60 км/ч и возможность организации сети зарядных станций для БА. К тому же энергоёмкость аккумуляторов возросла до 50 вт*ч/кг, а у подготовляемых к массовому производству никель-цинковых и др. аккумуляторов даже до 100 вт*ч/кг. Согласно прогнозам, к кон. 20 в. Э. займут ведущее место в гор. автотранспорте.

Совр. Э. - спец. рассчитанная на гор. эксплуатацию конструкция с облегчёнными (для компенсации массы БА) ходовой частью и кузовом, особой трансмиссией и удобным для смены БА её расположением. Ток от БА, находящейся, как правило, в 1-2 контейнерах под кузовом Э., идёт к двигателю через систему тиристорных блоков управления. При использовании двигателя переменного тока в систему включают его преобразователь. Двигатель ставят либо в блоке с ведущим мостом спереди или сзади, либо спереди- с карданным приводом от него к заднему мосту (рис. 1), либо (2-4 двигателя) в колёсах. Восстановление запаса энергии производят на большинстве Э. заменой БА с помощью особых тележек. В СССР созданы образцы грузовых Э., предназ-нач. для перевозки продуктов и почты в крупных городах. Такой Э. грузоподъёмностью 500 кг со свинцово-кислотными аккумуляторами имеет запас хода без подзарядки 80 км и развивает скорость до 70 км/ч. В Э. конструкции ВНИИ электромеханики и нек-рых зарубежных Э. имеются устройства для рекуперации электроэнергии (напр., при рекуперативном торможении, езде накатом и на спусках) и для подзарядки Б А (без съёма её с Э.) от городской трёхфазной электросети. Для устранения сложной пускорегулирующей аппаратуры в Э. иногда сочетают электродвигатель с автомоб. гидротрансмиссией, которая регулирует тяговое усилие и скорость движения. Существуют также т. н. "гибридные" Э. с ДВС, работающим на постоянном малотоксичном режиме, генератором, приводимым от него тяговым электродвигателем и небольшой Б А (рис. 2). ДВС служит для движения с установившейся скоростью и подзарядки БА, а последняя - в качестве дополнит, источника энергии для разгона Э., преодоления подъёмов, обгона. Сложность " гибридных" Э. и наличие в них, хоть и малотоксичного, ДВС ограничивают их распространение. Наряду с предотвращением загрязнения воздуха и уменьшением шума в городах внедрение Э. обеспечивает экономию жидкого топлива. Лит.: Ставров О. А., Электромобили, М., 1968; Долматовский Ю. А., Электромобиль, "Моделист-конструктор", 1977, № 11. Ю. А. Долматовский.

ЭЛЕКТРОМОНТАЖНЫЕ РАБОТЫ, специальные строит, работы, выполняемые при возведении и реконструкции зданий и сооружений различного назначения и связанные с монтажом электрич. сетей (воздушных и кабельных линий электропередачи, токопроводов, электропроводов и др.) и электрооборудования (электрич. машин, распределит, пунктов, пультов управления и др.). Э. р. обычно проводятся в 2 этапа. Первый этап, осуществляемый одновременно с общестроит. работами, включает установку крепёжных (закладных) деталей в строит, элементах для последующего крепления к ним электрооборудования и электромонтажных конструкций, укладку в фундаментах и перекрытиях зданий (сооружений) труб для электропроводок, устройство в стенах гнёзд для розеток и выключателей и т. п. При этом укрупнит, сборка электрооборудования и кабельных конструкций, изготовление трубных блоков, стендовая заготовка проводов и кабелей для осветит, сетей и др. производятся вне монтажной зоны в спец. оборудованных мастерских электромонтажных заготовок (МЭЗ). На втором этапе Э. р. осуществляются транспортировка, установка в проектное положение, сборка электрооборудования и электромонтажных конструкций, прокладка кабелей и проводов и присоединение их к смонтированному электрооборудованию. Э. р. завершаются пусконаладочными работами, из к-рых наиболее сложной является наладка устройств релейной защиты и систем автоматич. управления электроприводами.

Механизация Э. р. обеспечивается применением строит, машин и механизмов общего назначения (напр., автопогрузчиков, подъёмников, автокранов и т. п.), а также специализиров. электромонтажных механизмов, приспособлений и инструментов.

Сокращение сроков и повышение производительности труда при Э. р. обеспечиваются, в первую очередь, применением индустриальных методов монтажа электрооборудования, доставкой к месту Э. р. электромонтажных конструкций и элементов электрич. сетей укрупнёнными узлами и блоками, изготовленными и собранными в МЭЗ. Уровень индустриализации Э. р. в значит, мере обусловлен объёмом пром. произ-ва комплектного электрооборудования и электрич. сетей, имеющих высокую степень монтажной и наладочной готовности. Одно из осн. направлений дальнейшей индустриализации Э. р.- применение объёмных электротехнич. устройств (напр., помещений станций управления электроприводами, гор. трансформаторных подстанций), поставляемых пром-стью с полностью смонтированным и налаженным электрооборудованием; при этом Э. р. сводятся к установке таких устройств и присоединению их к внеш. электрическим сетям.

Лит.: Справочник по монтажу электроустановок промышленных предприятий, 2 изд., кн. 1 - 2, М., 1976; Строительные нормы и правила, ч. 3, гл. 33 - Электротехнические устройства. Правила производства и приемки работ, М., 1977.

Е. М. Феськов, Я. М. Боязный.

ЭЛЕКТРОМУЗЫКАЛЬНЫЕ ИНСТРУМЕНТЫ, музыкальные инструменты, в к-рых создаются управляемые исполнителем электрич. колебания, возбуждающие громкоговоритель. Источником таких колебаний служит генератор того или иного вида. К Э. и. относят также обычные инструменты, механич. колебания вибраторов к-рых (напр., струн электрогитары) с помощью адаптера преобразуются в электрические. Преимущественная область применения Э. и.- эстрадные ансамбли.

В одних Э. и. применяются электронные генераторы с плавно меняющейся частотой (т. н. инструменты со свободной интонацией). Выбор точной высоты каждого звука зависит от исполнителя, к-рый может плавно её менять, скользя пальцем по особой линейке - грифу, или, как в первом инструменте этого вида - терменвоксе, перемещая руку в воздухе перед спец. антенной. Это инструменты одноголосные, редко двухголосные. Достоинство таких инструментов - возможность очень выразительного исполнения мелодии; недостаток - невысокая стабильность строя.

В др. Э. и., обычно клавишных многоголосных, имеется набор генераторов, настроенных каждый на особую частоту (это т. н. инструменты с фиксированным строем). Наряду с электронными генераторами применяются электромеханические с зубчатыми колесиками, вращающимися в поле электромагнитов, фотоэлектрические с периодическим затенением светового луча, действующего на фотоэлемент, и т. п. Громкость звука управляется чаще всего педалью. Э. и. снабжают специальными устройствами для придания звукам муз. качеств, таких, как тембр, вибрато, мягкая атака и затухание (нерезкое включение и выключение звуков), легато (плавный переход от одного звука к другому).

Определённость тембров звуков обеспечивается двумя путями. Первый - соблюдение фиксированных отношений между амплитудами гармонич. обертонов разных номеров. Для этого, напр., выбирают нек-рую форму кривой колебаний, различающуюся для звуков разной высоты только масштабом времени, а для звуков разной силы - масштабом амплитуд. Пользуются также синтезированием тембров, подмешивая к колебаниям основной частоты колебания от др. генераторов того же инструмента, соответствующие набору гармонич. обертонов. Другой путь создания тембров - введение резонансных контуров (фильтров), усиливающих обертоны генерируемых колебаний в определённых областях частот (т. н. формантные области). Конструкции инструментов позволяют создавать в каждом из них разнообразные тембры и переключать их по ходу исполнения. Для имитации вибрации голоса и исполнения "вибрато" на смычковых инструментах применяется модуляция высоты звука с частотой 5-6 гц. Щелчки, возникающие при резких включениях и выключениях звуков, смягчаются либо использованием регулятора громкости (педали), либо с помощью особых устройств, регулирующих переходные процессы в генераторах.

Лит.: Корсунский С. Г., Симонов И. Д., Электромузыкальные инструменты, М.- Л., 1957; Володин А. А., Электронные музыкальные инструменты, М., 1970; С г о w h u r s t N. Н., Electronic musical instruments, [s. 1.], 1971. Г.А.Гольдберг.

ЭЛЕКТРОН (символ е~, е), первая элементарная частица, открытая в физике; материальный носитель наименьшей массы и наименьшего электрич. заряда в природе. Э.- составная часть атомов; их число в нейтральном атоме равно атомному номеру, т. е. числу протонов в ядре.

Совр. значения заряда (е) и массы (те) Э. равны:

е = - 4,803242(14)*10-10 ед. СГСЭ = - 1,6021892(46)*10-19 кулон, т, = 0,9109534(47)*10-27 г = 0,5110034(14) Мэв/с2 где с - скорость света в вакууме (в скобках после числовых значений величин указаны ср. квадратичные ошибки в последних значащих цифрах). Спин Э. равен 1/2 (в единицах Планка постоянной h), и, следовательно, Э. подчиняются Ферми - Дирака статистике. Магнитный момент Э. - ме = = l,0011596567(35)мo, где м0 - магнетон Бора. Э.- стабильная частица и относится к классу лептонов.

Установление существования Э. было подготовлено трудами многих выдающихся исследователей; в 1897 Э. был открыт Дж. Дж. Томсоном. Назв. "Э". [первоначально предложенное англ, учёным Дж. Стони (1891) для заряда одновалентного иона] происходит от греч. слова elektron, что означает янтарь. Электрич. заряд Э. условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря (см. Электрический заряд). Античастица Э. - позитрон (е+) открыта в 1932.

Э. участвует в электромагнитных, слабых и гравитационных взаимодействиях и проявляет многообразие свойств в зависимости от типа взаимодействий. В классич. электродинамике Э. ведёт себя как частица, движение к-рой подчиняется Лоренца - Максвелла уравнениям. Понятие "размер Э." не удаётся сформулировать непротиворечиво, хотя величину r0 = е2/mec2~ 10-13 см принято называть классич. радиусом Э. Причину этих затруднений удалось понять в рамках квантовой механики. Согласно гипотезе де Бройля (1924), Э. (как и все др. материальные микрообъекты) обладает не только корпускулярными, но и волновыми свойствами (см. Корпускулярно-волновой дуализм, Волны де

Бройля). Де-бройлевская длина волны Э. равна X = 2лh/mеv, где v - скорость движения Э. В соответствии с этим Э., подобно свету, могут испытывать интерференцию и дифракцию. Волновые свойства Э. были экспериментально обнаружены в 1927 амер. физиками К. Дэвиссоном и Л. Джермером и независимо англ, физиком Дж. П. Томсоном (см. Дифракция частиц).

Движение Э. подчиняется уравнениям квантовой механики: Шрёдингера уравнению для нерелятивистских явлений и Дирака уравнению - для релятивистских. Опираясь на эти уравнения, можно показать, что все оптич., электрич., магнитные, химич. и механич. свойства веществ объясняются особенностями движения Э. в атомах. Наличие спина существенным образом влияет на характер движения Э. в атоме. В частности, только учёт спина Э. в рамках квантовой механики позволил объяснить периодическую систему элементов Д. И. Менделеева, а также природу химической связи атомов в молекулах.

Э. - член единого обширного семейства элементарных частиц, и ему в полной мере присуще одно из осн. свойств элементарных частиц - их взаимопревращаемость. Э. может рождаться в различных реакциях, самыми известными из к-рых являются распад отрицательно заряженного мюона -) на электрон, электронное антинейтрино (vе) и мюонное нейтрино (vм):

м- = е- + ve + vм ,

а также бета-распад нейтрона на протон, электрон и электронное антинейтрино:

n = р + е- + ve.

Последняя реакция является источником b-лучей при радиоактивном распаде ядер. Оба процесса - частные случаи слабых взаимодействий. Примером электромагнитных процессов, в к-рых происходят превращения Э., может служить аннигиляция электрона и позитрона на два у-кванта

е- + е+ = 2 у.

С 60-х гг. интенсивно изучаются процессы рождения сильно взаимодействующих частиц (адронов) при столкновении электронов с позитронами, напр. рождение цары пи-мезонов:

е- + е+ = л- + л+.

В конце 1974 в аналогичной реакции открыта новая элементарная частица, т. н. J/Ф-частица (см. Резонансы, Элементарные частицы).

Релятивистская квантовая теория Э. (квантовая электродинамика) - самая разработанная область квантовой теории поля, в к-рой достигнуто удивительное согласие с экспериментом. Так, вычисленное значение магнитного момента Э.
30-05-8.jpg

(где а = 1/137,036 - тонкой структуры постоянная) с огромной точностью совпадает с его экспериментальным значением. Однако теорию Э. нельзя считать законченной, поскольку ей присущи внутренние логич. противоречия (см. Квантовая теория поля).

Лит.: М и л л и к е н Р., Электроны (+ и -), протоны, фотоны, нейтроны и космические лучи, пер. с англ., М.- Л., 1939; Андерсон Д., Открытие электрона, пер.

с англ., М., 1968; Т о м с о н Г. П., Семидесятилетний электрон, пер. с англ., "Успехи физических наук", 1968, т. 94, в. 2.

Л. И. Пономарёв.

ЭЛЕКТРОН, редко употребляемое название магниевых сплавов. Под таким назв. в 20-х гг. 20 в. появились первые пром. магниевые сплавы на основе систем Mg - А1 - Zn и Mg - Mn, содержащие до 10% А1, до 3% Zn и до 2,5% Мn.

"ЭЛЕКТРОН", наименование серии сов. искусственных спутников Земли (ИСЗ) для исследования радиац. пояса Земли, космич. лучей, химич. состава околоземного космич. пространства, коротковолнового излучения Солнца и радиоизлучения галактики, микрометеоритов и др. ч Э.-1" и "Э.-З" имели массу 350 кг, диам. 0,75 м, дл. 1,3 м; "Э.-2" и "Э.-4" - массу 445 кг, диам. 1,8 м, дл. 24 м. Измерения, проведённые с помощью ИСЗ "Э.", позволили изучить временные вариации характеристик околоземного космич. пространства при различных уровнях солнечной активности. "Э." запускались попарно одной ракетой-носителем.

Полёты искусственных спутников Земли "Электрон"
 

 Наименование

 

Начальные

параметры

орбиты

 

 

Дата
выпуска

Высота в перигее, 
км

Высота в апогее,
км

Наклонение,
 . . .

Период обращения, мин.

"Электрон - 1"...

30. 1. 64

406

7100

61

169

"Электрон - 2"...

-

460

68200

61

1360

"Электрон - 3"...

11. 7. 64

405

7040

60,86

168

"Электрон - 4"...

-

459

66235

60,87

1314

ЭЛЕКТРОН ПРОВОДИМОСТИ, электрон металлов и полупроводников, энергия к-рого находится в частично заполненной энергетич. зоне (зоне проводимости, см. Твёрдое тело). В полупроводниках при абс. нуле темп-ры электроны в зоне проводимости отсутствуют. Они появляются при повышении темп-ры, освещении, внедрении примесей и др. внеш. воздействиях. В металлах всегда есть Э. п., и их концентрация велика. При Т=0 К в металле Э. п. занимают все состояния с энерггей, меньшей энергии Ферми. Свойства Э. п. удобно описывать в терминах кинетич. теории газов, пользуясь понятиями длины свободного пробега, частоты столкновений и т. п. В полупроводниках, где число Э. п. относительно мало, газ Э. п. хорошо описывается классической Болъцмана статистикой. В металлах Э. п. образуют вырожденную Ферми-жидкость.

ЭЛЕКТРОНАРКОЗ (от электро... и наркоз), электроанестезия, способ общего обезболивания путём воздействия электрическим током на головной мозг. Наркотизирующее действие электрич. тока, подаваемого импульсами, впервые испытал на себе франц. учёный С. Ледюк в 1902. При совр. Э. применяют импульсный (с частотой от 100 Гц до 6 кгц), синусоидальный и т. н. интерференционный токи; сила тока - от 10 до 200 ма. При любой методике Э. электроды наклг бывают на лобную и затылочную области головы. Наркотизирующий эффект обусловлен снижением активности воспринимающих боль корковых и подкорковых структур головного мозга. Побочные эффекты электрич. воздействия (мышечный спазм, нарушения кровообращения и дыхания) затрудняли практич. применение метода. Развитие анестезиологии обусловило возможность использования Э. (его преимущество - быстрота достижения обезболивания и выхода из состояния наркоза, отсутствие токсич. действия, портативность аппаратуры) в качестве компонента совр. комбинированного наркоза. Специалисты, изучающие проблемы Э., с 1966 объединены в Междунар. об-во электросна и электроанестезии.

Лит.: Электронаркоз в хирургии, Таш., 1966. В. В. Сшаев.

ЭЛЕКТРОНВОЛЬТ, внесистемная единица энергии, равная энергии, приобретаемой частицей, несущей один элементарный заряд (заряд электрона) при перемещении в ускоряющем электрич. поле между двумя точками с разностью потенциалов 1 в. Обозначения: рус. - эв, междунар.- eV.

1 эв = 1,60219- 10-19дж. Применяются кратные единицы килоэлектронвольт (кэв, keV), равный 103 эв, мегаэлектронвольт (Мэв, MeV), равный 106эв. Часто в эв выражают массу элементарных частиц, что основано на уравнении Эйнштейна Е = mс2, связывающем массу частицы m с её полной энергией Е; с - скорость света. Энергия, соответствующая одной атомной единице массы, равна (931,5016+0,0026) Мэв.

ЭЛЕКТРОНИКА, наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств, в к-рых это взаимодействие используется для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации. Наиболее характерные виды таких преобразований - генерирование, усиление и приём электромагнитных колебаний с частотой до 1012 гц, а также инфракрасного, видимого, ультрафиолетового и рентгеновского излучений (1012-1020 гц). Преобразование до столь высоких частот возможно благодаря исключительно малой инерционности электрона - наименьшей из ныне известных заряженных частиц. В Э. исследуются взаимодействия электронов как с макрополями в рабочем пространстве электронного прибора, так и с микрополями внутри атома, молекулы или кристаллич. решётки.

Э. опирается на мн. разделы физики - электродинамику, классич. и квантовую механику, физику твёрдого тела, оптику, термодинамику, а также на химию, металлургию, кристаллографию и др. науки. Используя результаты этих и ряда др. областей знаний, Э., с одной стороны, ставит перед др. науками новые задачи, чем стимулирует их дальнейшее развитие, с другой - создаёт новые электронные приборы и устройства и тем самым вооружает науки качественно новыми средствами и методами исследования. Практические задачи Э.: разработка электронных приборов и устройств, выполняющих различные функции в системах преобразования и передачи информации, в системах управления, в вычислит, технике, а также в энергетич. устройствах; разработка науч. основ технологии производства электронных приборов и технологии, использующей электронные и ионные процессы и приборы для различных областей науки и техники.

Э. играет ведущую роль в научно-технич. революции. Внедрение электронных приборов в различные сферы человеческой деятельности в значит, мере (зачастую решающей) способствует успешной разработке сложнейших научно-технич. проблем, повышению производительности физ. и умственного труда, улучшению экономич. показателей производства. На основе достижений Э. развивается пром-сть, выпускающая электронную аппаратуру для различных видов связи, автоматики, телевидения, радиолокации, вычислит, техники, систем управления технологич. процессами, приборостроения, а также аппаратуру светотехники, инфракрасной техники, рентгенотехники и др.

Историческая справка. Э. зародилась в нач. 20 в. после создания основ электродинамики (1856-73), исследования свойств термоэлектронной эмиссии (1882-1901), фотоэлектронной эмиссии (1887-1905), рентгеновских лучей (1895-97), открытия электрона (Дж. Дж. Томсон, 1897), создания электронной теории (1892-1909). Развитие Э. началось с изобретения лампового диода (Дж. А. Флеминг, 1904), трёхэлектродной лампы - триода (Л. де Форест, 1906); использования триода для генерирования электрич. колебаний (нем. инж. А. Мей-снер, 1913); разработки мощных генераторных ламп с водяным охлаждением (М. А. Бонч-Бруевич, 1919-25) для радиопередатчиков, используемых в системах дальней радиосвязи и радиовещания. Вакуумные фотоэлементы (экспериментальный образец создал А. Г. Столетов, 1888; пром. образцы - нем. учёные Ю. Эльстер и Г. Хейтель, 1910); фотоэлектронные умножители - однокаскадные (П. В. Тимофеев, 1928) и многокаскадные (Л. А. Кубецкий, 1930)- позволили создать звуковое кино, послужили основой для разработки передающих телевизионных трубок: видикона (идея предложена в 1925 А. А. Чернышёвым), иконоскопа (С. И. Катаев и независимо от него В. К. Зворыкин, 1931-32), супериконоскопа (П. В. Тимофеев, П. В. Шмаков, 1933), суперортикона (двухсторонняя мишень для такой трубки была предложена сов. учёным Г. В. Брауде в 1939; впервые суперортикон описан амер. учёными А. Розе, П. Веймером и X. Лоу в 1946) и др. Создание многорезонаторного магнетрона (Н. Ф. Алексеев и Д. Е. Маляров, под рук. М. А. Бонч-Бруевича, 1936-37), отражательного клистрона (Н. Д. Девятков и др. и независимо от них сов. инж. В. Ф. Коваленко, 1940) послужило основой для развития радиолокации в сантиметровом диапазоне волн; пролётные клистроны (идея предложена в 1932 Д. А. Рожанским, развита в 1935 сов. физиком А. Н. Арсеньевой и нем. физиком О. Хайлем, реализована в 1938 амер. физиками Р. и 3. Варианами и др.) и лампы бегущей волны (амер. учёный Р. Компфнер, 1943) обеспечили дальнейшее развитие систем радиорелейной связи, ускорителей элементарных частиц и способствовали созданию систем космич. связи. Одновременно с разработкой вакуумных электронных приборов создавались и совершенствовались газоразрядные приборы (ионные приборы), напр, ртутные вентили, используемые гл. обр. для преобразования переменного тока в постоянный в мощных пром. установках; тиратроны для формирования мощных импульсов электрич. тока в устройствах импульсной техники; газоразрядные источники света.

Использование кристаллич. полупроводников в качестве детекторов для радиоприёмных устройств (1900-05), создание купроксных и селеновых выпрямителей тока и фотоэлементов(1920- 1926), изобретение кристадина (О. В. Лосев, 1922), изобретение транзистора (У. Шокли, У. Браттейн, Дж. Бардин, 1948) определили становление и развитие полупроводниковой электроники. Разработка планарной технологии полупроводниковых структур (кон. 50 - нач. 60-х гг.) и методов интеграции мн. элементарных приборов (транзисторов, диодов, конденсаторов, резисторов) на одной монокристаллич. полупроводниковой пластине привело к созданию нового направления в Э. - микроэлектроники (см. также Интегральная электроника). Осн. разработки в области интегральной Э. направлены на создание интегральных схем - микроминиатюрных электронных устройств (усилителей, преобразователей, процессоров ЭВМ, электронных запоминающих устройств и т. п.), состоящих из сотен и тысяч электронных приборов, размещаемых на одном полупроводниковом кристалле площадью в неск. мм2. Микроэлектроника открыла новые возможности для решения таких проблем, как автоматизация управления технологич. процессами, переработка информации, совершенствование вычислит, техники и др., выдвигаемых развитием совр. общественного производства. Создание квантовых генераторов (Н. Г. Басов, А. М. Прохоров и независимо от них Ч. Тайне, 1955) - приборов квантовой электроники - определило качественно новые возможности Э., связанные с использованием источников мощного когерентного излучения оптич. диапазона (лазеров) и построением сверхточных квантовых стандартов частоты.

Сов. учёные внесли крупный вклад в развитие Э. Фундаментальные исследования в области физики и технологии электронных приборов выполнили М. А. Бонч-Бруевич, Л. И. Мандельштам, Н. Д. Папалекси, С. А. Векшинский, А. А. Чернышёв, М. М. Богословский и мн. др.; по проблемам возбуждения и преобразования электрич. колебаний, излучения, распространения и приёма радиоволн, их взаимодействия с носителями тока в вакууме, газах и твёрдых телах - Б. А. Введенский, В. Д. Калмыков, А. Л. Минц, А. А. Расплетин, М. В. Шулейкин и др.; в области физики полупроводников - А. Ф. Иоффе; люминесценции и по др. разделам физ. оптики - С. И. Вавилов; квантовой теории рассеяния света излучения, фотоэффекта в металлах - И. Е. Тамм и мн. др.

Области, основные разделы и направления электроники. Э. включает в себя 3 области исследований: вакуумную Э., твердотельную Э., квантовую Э. Каждая область подразделяется на ряд разделов и ряд направлений. Раздел объединяет комплексы однородных физико-химических явлений и процессов, к-рые имеют фундаментальное значение для разработки мн. классов электронных приборов данной области. Направление охватывает методы конструирования и расчётов электронных приборов, родственных по принципам действия или по выполняемым ими функциям, а также способы изготовления этих приборов.

Вакуумная Э. содержит следующие разделы: 1) эмиссионная Э., охватывающая вопросы термо-, фотоэмиссии, вторичной электронной эмиссии, туннельной эмиссии, исследования катодов и антиэмиссионных покрытий; 2) формирование потоков электронов и потоков ионов, управление этими потоками; 3) формирование электромагнитных полей с помощью резонаторов, систем резонаторов, замедляющих систем, устройств ввода и вывода энергии; 4) электронная люминесценция (катодолюминесценция); 5) физика и техника высокого вакуума (его получение, сохранение и контроль); 6) теплофиз. процессы (испарение в вакууме, формоизменение деталей при циклич. нагреве, разрушение поверхности металлов при импульсном нагреве, отвод тепла от элементов приборов); 7) поверхностные явления (образование плёнок на электродах и изоляторах, неоднородностей на поверхностях электрода); 8) технология обработки поверхностей, в т. ч. электронная, ионная и лазерная обработка; 9) газовые среды - раздел, включающий вопросы получения и поддержания оптимального состава и давления газа в газоразрядных приборах. Осн. направления вакуумной Э. охватывают вопросы создания электровакуумных приборов (ЭВП) след, видов: электронных ламп (триодов, тетродов, пентодов и т. д.); ЭВП СВЧ (магнетронов, клистронов и т. д.), электроннолучевых приборов (кинескопов, осциллографич. трубок и т. д.); фотоэлектронных приборов (фотоэлементов, фотоэлектронных умножителей), рентгеновских трубок; газоразрядных приборов (мощных преобразователей тока, источников света, индикаторов).

Разделы и направления твердотельной Э. в основном связаны с полупроводниковой Э. Фундаментальные разделы последней охватывают след, вопросы: 1) изучение свойств полупроводниковых материалов, влияние примесей на эти свойства; 2) создание в кристалле областей с различной проводимостью методами эпитаксиального выращивания (см. Эпитаксия), диффузии, ионного внедрения (имплантации), воздействием радиации на полупроводниковые структуры; 3) нанесение диэлектрич. и металлич. плёнок на полупроводниковые материалы, разработка технологии создания плёнок с необходимыми свойствами и конфигурацией; 4) исследование физ. и хим. процессов на поверхности полупроводников; 5) разработку способов и средств получения и измерения элементов приборов микронных и субмикронных размеров. Осн. направления полупроводниковой Э. связаны с разработкой и изготовлением различных видов полупроводниковых приборов: полупроводниковых диодов (выпрямительных, смесительных, параметрических, стабилитронов), усилительных и генераторных диодов (туннельных, лавинно-пролётных, диодов Ганна), транзисторов (биполярных и униполярных), тиристоров, оптоэлектронных приборов (светоизлу-чающих диодов, фотодиодов, фототранзисторов, оптронов, светодиодных и фотодиодных матриц), интегральных схем. К направлениям твердотельной Э. относятся также диэлектрич. электроника, изучающая электронные процессы в диэлектриках (в частности, в тонких диэлектрич. плёнках) и их использование, напр, для создания диэлектрич. диодов, конденсаторов; магнитоэлектроника, использующая магнитные свойства вещества для управления потоками электромагнитной энергии с помощью ферритовых вентилей, циркуляторов, фазовращателей и т. д. и для создания запоминающих устройств, в т. ч. на магнитных доменах; акустоэлектроника и пьезоэлектроника, рассматривающие вопросы распространения поверхностных и объёмных акустич. волн и создаваемых ими переменных электрич. полей в кристаллич. материалах и взаимодействия этих полей с электронами в приборах с полупроводниково-пьезоэлектрич. структурой (кварцевых стабилизаторах частоты, пьезоэлектрич. фильтрах, ультразвуковых линиях задержки, акустоэлектронных усилителях и т. д.); криоэлектроника, исследующая изменения свойств твёрдого тела при глубоком охлаждении для построения малошумящих усилителей и генераторов СВЧ, сверхбыстродействующих вычислительных и запоминающих устройств; разработка и изготовление резисторов.

Наиболее важные направления квантовой Э. - создание лазеров и мазеров. На основе приборов квантовой Э. строятся устройства для точного измерения расстояний (дальномеры), квантовые стандарты частоты, квантовые гироскопы, системы оптич. многоканальной связи, дальней космич. связи, радиоастрономии. Энергетич. воздействие лазерного концентрированного излучения на вещество используется в пром. технологии. Лазеры находят различное применение в биологии и медицине.

Э. находится в стадии интенсивного развития; для неё характерно появление новых областей и создание новых направлений в уже существующих областях.

Технология электронных приборов. Конструирование и изготовление электронных приборов базируются на использовании сочетания разнообразных свойств материалов и физико-химич. процессов. Поэтому необходимо глубоко понимать используемые процессы и их влияние на свойства приборов, уметь точно управлять этими процессами. Исключительная важность физико-химич. исследований и разработка науч. основ технологии в Э. обусловлены, во-первых, зависимостью свойств электронных приборов от наличия примесей в материалах и веществ, сорбированных на поверхностях рабочих элементов приборов, а также от состава газа и степени разряжения среды, окружающей эти элементы; во-вторых,- зависимостью надёжности и долговечности электронных приборов от степени стабильности применяемых исходных материалов и управляемости технологии. Достижения технологии нередко дают толчок развитию новых направлений в Э. Общие для всех направлений Э. особенности технологии состоят в исключительно высоких (по сравнению с др. отраслями техники) требованиях, предъявляемых в электронной пром-сти к свойствам используемых исходных материалов; степени защиты изделии от загрязнения в процессе произ-ва; геом. точности изготовления электронных приборов. С выполнением первого из этих требований связано создание мн. материалов, обладающих сверхвысокими чистотой и совершенством структуры, с заранее заданными физико-химич. свойствами - спец. сплавов монокристаллов, керамики, стёкол и др. Создание таких материалов и исследование их свойств составляют предмет спец. научно-технич. дисциплины - электронного материаловедения. Одной из самых острых проблем технологии, связанных с выполнением второго требования, является борьба за уменьшение запылённости газовой среды, в к-рой проходят наиболее важные, технологич. процессы. В ряде случаев допустимая запылённость - не св. трёх пылинок размером менее 1 мкм в 1 м3. О жёсткости требований к геом. точности изготовления электронных приборов свидетельствуют, напр., след, цифры: в ряде случаев относит, погрешность размеров не должна превышать 0,001%; абс. точность размеров и взаимного расположения элементов интегральных схем достигает сотых долей мкм. Это требует создания новых, более совершенных методов обработки материалов, новых средств и методов контроля. Характерным для технологии в Э. является необходимость широкого использования новейших методов и средств: электроннолучевой, ультразвуковой и лазерной обработки и сварки, фотолитографии, электронной и рентгеновской литографии, электроискровой обработки, ионной имплантации, плазмо-химии, молекулярной эпитаксии, электронной микроскопии, вакуумных установок, обеспечивающих давление остаточных газов до 10-13 мм рт. ст. Сложность мн. технологич. процессов требует исключения субъективного влияния человека на процесс, что обусловливает актуальность проблемы автоматизации произ-ва электронных приборов с применением ЭВМ наряду с общими задачами повышения производительности труда. Эти и другие специфические особенности технологии в Э. привели к необходимости создания нового направления в машиностроении - электронного машиностроения.

Перспективы развития Э. Одна из осн. проблем, стоящих перед Э., связана с требованием увеличения количества обрабатываемой информации вычислит, и управляющими электронными системами с одноврем. уменьшением их габаритов и потребляемой энергии. Эта проблема решается путём создания полупроводниковых интегральных схем, обеспечивающих время переключения до 10-11 сек; увеличения степени интеграции на одном кристалле до миллиона транзисторов размером 1-2 мкм; использования в интегральных схемах устройств оптич. связи и оптоэлектронных преобразователей (см. Оптоэлектроника), сверхпроводников; разработки запоминающих устройств ёмкостью неск. мегабит на одном кристалле; применения лазерной и электроннолучевой коммутации; расширения функциональных возможностей интегральных схем (напр., переход от микропроцессора к микроЭВМ на одном кристалле); перехода от двумерной (пленарной) технологии интегральных схем к трёхмерной (объёмной) и использования сочетания различных свойств твёрдого тела в одном устройстве; разработки и реализации принципов и средств стереоскопического телевидения, обладающего большей информативностью по сравнению с обычным; создания электронных приборов, работающих в диапазоне миллиметровых и субмилллметровых волн, для широкополосных (более эффективных) систем передачи информации, а также приборов для линий оптич. связи; разработки мощных, с высоким кпд, приборов СВЧ и лазеров для энергетич. воздействия на вещество и направленной передачи энергии (напр., из космоса). Одна из тенденций развития Э.- проникновение её методов и средств в биологию (для изучения клеток и структуры живого организма и воздействия на него) и медицину (для диагностики, терапии, хирургии). По мере развития Э. и совершенствования технологии произ-ва электронных приборов расширяются области использования достижения Э. во всех сферах жизни и деятельности людей, возрастает роль Э. в ускорении научно-технич. прогресса. А. И. Шокин.

ЭЛЕКТРОННАЯ АВТОМАТИЧЕСКАЯ ТЕЛЕФОННАЯ СТАНЦИЯ (ЭАТС), телефонная станция, в к-рой коммутация линий и каналов, а также управление процессами коммутации осуществляются устройствами на электронных элементах (полупроводниковых приборах, интегральных схемах, ферритах и т. д.). Принципы построения коммутац. устройств ЭАТС определяются гл. обр. методами разделения каналов - пространств., частотного, временного разделения (коммутации); при этом методы частотного и временного разделения аналогичны методам уплотнения линий связи (см. Линии связи уплотнение). Распространение (1978) получили ЭАТС, в которых используются пространственная или (и) временная коммутация линий и каналов (см. Электросвязь). К ЭАТС с пространственной коммутацией относятся станции, выполненные на основе т. н. пространственных полупроводниковых соединителей. Пространственная коммутация используется в основном в ЭАТС малой и средней ёмкости. В ЭАТС с временной коммутацией линия связи или групповой тракт связи посредством электронных коммутаторов в определённые моменты предоставляется для передачи импульсных сигналов каждого канала. В таких ЭАТС для разделения сообщений применяют импульсную модуляцию колебаний: в оконечных ЭАТС малой и средней ёмкости - амплитудно-импульсную и широтно-импульсную; в транзитных ЭАТС большой и средней ёмкости - импульсно-кодовую (ИКМ). Наиболее перспективны системы с ИКМ, при использовании к-рых открывается возможность объединения (интеграции) процессов передачи и коммутации и создания на этой основе интегральных цифровых систем связи. В англоязычной научно-технической литературе к ЭАТС с пространств, коммутацией относят также механоэлектронные автоматич. телеф. станции (построенные на миниатюрных многократных координатных соединителях) и квазиэлектронные автоматические телефонные станции.

Лит.: Л у т о в М. Ф., Электронные АТС, о кн.: Радиотехника и электросвязь, М., 1966 (ВИНИТИ." Итоги науки и техники); П р а г е р Э., Т р н к а Я., Электронные телефонные станции, пер. с чешек., М., 1976.

М. Ф. Лутов.

ЭЛЕКТРОННАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ), вычислительная машина, основные функциональные элементы к-рой (логические, запоминающие, индикационные и т. д.) выполнены на электронных лампах или полупроводниковых приборах, либо на интегральных микросхемах и т. д. Первые ЭВМ, как аналоговые (см. Аналоговая вычислительная машина), так и цифровые (см. Цифровая вычислительная машина), появились в сер. 40-х гг. 20 в. Благодаря преимуществам ЭВМ по сравнению с вычислительными машинами др. типов (высокое быстродействие, компактность, надёжность, автоматизация вычислит, процесса и др.) они получили преим. использование при научно-технич. расчётах, обработке информации (в т. ч. планировании, учёте, прогнозировании и др.), автоматич. управлении. См. также Вычислительная техника, Кибернетика техническая, Сеть вычислительных центров, Управления автоматизированная система. Управление в технике.

ЭЛЕКТРОННАЯ И ИОННАЯ ОПТИКА, наука о поведении пучков электронов и гонов в вакууме под воздействием электрич. и магнитных полей. Т. к. изучение электронных пучков началось ранее, чем ионных, и первые используют гораздо шире, чем вторые, весьма распространён термин "электронная оптика". Э. и и. о. занимается гл. обр. вопросами формирования, фокусировки и отклонения пучков зпряж. частиц, а также получения с их помощью изображений, к-рые можно визуализировать на люминесцирующих экранах или фотография, плёнках. Такие изображения принято наз. электроннооптич. и ионнооптич. изображениями. Развитие Э. и и. о. в значит, степени обусловлено потребностями электронной техники.

Зарождение Э. и и. о. связано с созданием в кон. 19 в. электроннолучевой трубки (ЭЛТ). В первой осциллография. ЭЛТ, изготовленной в 1897 К. Ф. Брауном, электронный пучок отклонялся магнитным полем. Отклонение с помощью электростатич. поля осуществил в своих опытах по определению отношения заряда электрона к его массе Дж. Дж. Томсон, пропуская пучок через плоский конденсатор, помещённый внутри ЭЛТ. В 1899 нем. физик И. Э. Вихерт применил для фокусировки электронного пучка в ЭЛТ катушку из изолированной проволоки, по к-рой протекал электрич. ток. Однако лишь в 1926 нем. учёный X. Буш теоретически рассмотрел движение заряж. частиц в магнитном поле такой катушки и показал, что она пригодна для получения правильных электроннооптич. изображений и, следовательно, является электронной линзой (ЭЛ). Последующая разработка электронных линз (магнитных и электростатических) открыла путь к созданию электронного микроскопа, электроннооптического преобразователя и ряда др. приборов, в к-рых формируются правильные электроннооптич. изображения объектов - либо испускающих электроны, либо тем или иным образом воздействующих на электронные пучки. Конструирование специализированных ЭЛТ для телевиз. и радиолокац. аппаратуры, для записи, хранения и воспроизведения информации и т. п. привело к
дальнейшему развитию разделов Э. и и. о., связанных с управлением пучками заряж. частиц. Значит, влияние на развитие Э. и и. о. оказала разработка аппаратуры для анализа потоков электронов И ионов (бета-спектрометров, массспектрометров и др. аналитич. приборов). В Э. и и. о., как правило, не рассматриваются вопросы, возникающие в сверхвысоких частот технике, лишь изредка рассматриваются процессы в электронных лампах, ускорителях заряженных частиц и др. приборах и устройствах, специфика к-рых отделяет их от осн. направлений Э. и и. о.

Для решения большинства задач Э. и и. о. достаточно рассматривать движение заряж. частиц в рамках классич. механики, т. к. волновая природа частиц (см. Корпускулярно-волновой дуализм) в этих задачах практически не проявляется. В таком приближении Э. и и. о. носит назв. геометрической Э. ии. о., что обусловлено наличием глубокой аналогии между геом. Э. и и. о. и геометрической оптикой световых лучей, к-рая выражается в том, что поведение пучков заряж. частиц в электрич. и магнитных полях во многом подобно поведению пучков лучей света в неоднородных оптич. средах. Качественно это подобие обнаруживается уже при сравнении рис. 1 и 2. В основе указанной аналогии лежит более общая аналогия между классич. механикой и световой геом. оптикой, установленная У. Р. Гамильтоном, доказавшим в 1834, что общее уравнение механики (уравнение Гамильтона - Якоби) по форме подобно оптич. уравнению эйконале. Как и в световой геом. оптике, в геом. Э. и и. о. вводится понятие преломления показателя, при вычислении погрешностей изображения - аберраций, 6. ч. к-рых аналогична аберрациям оптических систем,- зачастую используется метод эйконала. Когда приближение геом. Э. и и. о. недостаточно, напр, при исследовании разрешающей способности электронного микроскопа, привлекаются методы квантовой механики.

В электроннооптич. устройствах широко применяются электрич. и магнитные поля, обладающие симметрией вращения относительно оптич. оси системы. ЭЛ и электронные зеркала с такими полями наз. осесимметричным и. Электрич. поля с симметрией вращения создаются электродами в виде цилиндров, чашечек, диафрагм с круглыми отверстиями и т. п. (рис. 3). Для получения осеснмметричных магнитных полей используют электромагниты (иногда постоянные магниты) с полюсами в форме тел вращения или тороидальные катушки с намоткой из изолированной проволоки, по к-рой пропускается электрич. ток (рис. 4). Осесимметричные линзы и зеркала создают правильные электроннооптич. изображения, если заряж. частицы движутся достаточно близко к оси симметрии поля, а их нач. скорости мало отличаются друг от друга. Если эти условия не выполняются, погрешности изображения становятся весьма значительными. Когда предмет и изображение лежат за пределами поля, осесимметричные ЭЛ - всегда собирающие. В электростатич. осесимметричных ЭЛ, как и в светооптич. линзах со сферич. поверхностями, изображение может быть только прямым или перевёрнутым, в магнитных ЭЛ - оно дополнительно повёрнуто на нек-рый угол. Электроннооптич. свойства поля с симметрией вращения определяются положением его кардинальных точек, аналогичных кардинальным точкам осесимметричных светооптич. изображающих систем: двух фокусов, двух главных точек и двух узловых точек. Построение изображения производится по правилам световой геом. оптики. Электростатич. осесимметричным полям свойственны те же пять видов геом. аберраций третьего порядка, что и светооптическим центрированным системам сферич. поверхностей: сферическая аберрация, астигматизм, кривизна поля изображения, дисторсия и кома. В магнитных полях к ним добавляются ещё три: т. н. анизотропные дисторсия, астигматизм и кома. Кроме того, существуют три вида хроматич. аберраций (в электростатич. полях - два), обусловленных нек-рым неизбежным разбросом энергий поступающих в поле частиц. Вообще говоря, аберрации полей с симметрией вращения в сопоставимых условиях значительно превышают по величине аберрации светооптич. центрированных систем, т. е. ЭЛ и электронные зеркала по качеству существенно уступают светооптическим. Вопрос о компенсации аберраций или их уменьшений является одним из основных в теоретич. Э. и и. о.

Существуют и др. типы ЭЛ и зеркал, поля к-рых обладают различными видами симметрии. Они формируют изображения точечных объектов в виде отрезков линий, однако иногда способны осуществлять и стигматическую фокусировку (точка в точку). Т. н. цилиндрич. электростатич. и магнитные линзы и зеркала создают линейные изображения точечных предметов. Поля в таких ЭЛ "двумерны" (их напряжённости описываются функциями только двух декартовых координат) и симметричны относительно нек-рой средней плоскости, вблизи к-рой движутся заряж. частицы. В ряде аналитич. электровакуумных приборов высококачеств. фокусировка необходима только в одном направлении. В этих случаях целесообразно применять т. н. трансаксиальные электростатич. ЭЛ или трансаксиальные электронные зеркала, аберрации к-рых в средней плоскости очень малы (сравнимы с аберрациями светооптич. линз). Для воздействия на пучки заряж. частиц с большими энергиями используют квадрупольные ЭЛ (электрич. и магнитные). Для отклонения пучков заряж. частиц используют электроннооптич. устройства с электрич. или магнитными полями, направленными поперёк пучка. Простейшим электрич. отклоняющим элементом является плоский конденсатор (рис. 5). В ЭЛТ с целью уменьшения отклоняющего напряжения применяют системы с электродами более сложной формы. Магнитные поля, предназначенные для отклонения пучков, создаются электромагнитами (рис. 6) или проводниками, по к-рым течёт ток.

Очень разнообразны формы отклоняющих электрич. и магнитных полей, применяемых в аналитич. приборах, в к-рых используется свойство этих полей разделять (разрешать) заряж. частицы по энергии и массе. Широко используется также их свойство фокусировать пучки.

Электрич. поля обычно формируются различными конденсаторами: плоским, цилиндрич. (рис. 7), сферическим (рис. 8). Из магнитных полей часто применяются однородное поле (рис. 9) и секторное поле (рис. 10). Для улучшения качества фокусировки искривляют границы секторных магнитных полей, а также применяют неоднородные магнитные поля, напряжённость к-рых меняется по определ. закону.

Перечисленные отклоняющие электрич. и магнитные устройства, иногда наз. электронными (ионными) призмами, отличаются от светооптич. призм тем, что они не только отклоняют, но и фокусируют пучки заряж. частиц. Фокусировка приводит к тому, что попадающие в поля таких устройств параллельные пучки после отклонения перестают быть параллельными. Между тем для создания высококачеств. аналитич. электронных и ионных приборов по точной аналогии со светооптич. призменным спектрометром необходимы электронные (ионные) призмы, к-рые подобно световым призмам сохраняют параллельность пучков. В качестве таких электронных призм применяют телескопич. системы электронных линз. Добавив к электронной призме две ЭЛ, одну т. н. коллиматорную на входе, другую - фокусирующую на выходе, можно получить аналитич. прибор, в котором сочетаются высокая разрешающая способность и большая электроннооптич. светосила.

Лит.: Арцимович Л. А., Лукьянов С. Ю., Движение заряженных частиц в электрических и магнитных полях, М., 1972; Бонштедт Б. Э., Маркович М. Г., Фокусировка и отклонение пучков в электроннолучевых приборах, М., 1967; Брюхе Е., Шерцер О., Геометрическая электронная оптика, пер. с нем., Л., 1943; Г л а з е р В., Основы электронной оптики, пер. с нем., М., 1957; Гринберг Г. А., Избранные вопросы математической теории электрических и магнитных явлений, М.- Л., 1948; Зинченко Н. С., Курс лекций по электронной оптике, 2 изд., Хар., 1961; Ке л ь м а н В.М., Я в о р С. Я., Электронная оптика, 3 изд., Л., 1968; Страшкевич А. М., Электронная оптика электростатических систем, М.- Л., 1966; Явор С. Я., Фокусировка заряженных частиц квадрупольными линзами, М., 1968. В. М. Келъман, И. В. Родникова.

ЭЛЕКТРОННАЯ КАМЕРА, электронно-оптич. прибор для воспроизведения изображений объектов на фотоэмульсии (т. н. электронографич. пластинка), чувствительной к воздействию потока электронов. В астрономии Э. к. применяются в сочетании со светосильными телескопами, с помощью к-рых оптлч. изображение объекта проецируется на фотокатод камеры. Возникающий при этом поток фотоэлектронов проецируется с помощью той или иной электроннооптич. системы (электростатич., магнитной, электромагнитной или комбинированной; см. Электронная и ионная оптика) на электронографич. пластинку, где и фиксируется электронное изображение объекта, соответствующее его оптич. изображению на фотокатоде. Благодаря более эффективному, в сравнении с обычной фотографией, использованию светового потока, особенно в инфракрасной области спектра, Э. к. позволяют значительно сокращать выдержки, а в ряде случаев повышать проницающую силу телескопов.

Поскольку плотность изображения на эмульсии пропорциональна плотности падающего потока электронов, а последняя таким же образом зависит от освещённости фотокатода, то в характеристич. кривой Э. к. нет области недодержек, свойственной обычным фотографич. эмульсиям. Это обстоятельство, а также значит, способность электронографич. эмульсии к накоплению суммарного по времени воздействия электронов и её высокая разрешающая способность позволяют применять Э. к. для выявления слабых деталей спектров н структуры протяжённых небесных объектов.

Первая Э. к. для астрономич. целей была создана А. Лаллеманом (Франция) в 50-х гг. 20 в.

Лит.: Курс астрофизики и звездной астрономии, под ред. А. А. Михайлова, 3 изд., т. 1, М., 1973. Н. П. Ерпылёе.

ЭЛЕКТРОННАЯ КОНФИГУРАЦИЯ, см. в ст. Атом.

ЭЛЕКТРОННАЯ ЛАМПА, электровакуумный прибор, действие к-рого осн. на изменении потока электронов (отбираемых от катода и движущихся в вакууме) электрич. полем, формируемым с помощью электродов. В зависимости от значения выходной мощности Э. л. подразделяются на приёмно-усилителъные лампы (выходная мощность не св. 10 вm) и генераторные лампы (св. 10 вm).

Первые Э. л. (нач. 20 в.) - электровакуумные диоды и триоды - разрабатывались на основе техники производства ламп накаливания и по внешнему виду весьма Походили на последние: стеклянная колба, в центре к-рой размещалась вольфрамовая нить накала, служащая катодом (слово "лампа" в названии "Э. л." подчёркивало это сходство, "электронная" указывало на принципиальные различия). Уже в 30-е гг. внеш. вид Э. л. существенно изменился, однако слово "лампа" в её назв. сохранилось до сих пор. В 1-й пол. 20 в. Э, л. оказали решающее влияние на характер развития радиотехники. На их основе возникли радиосвязь, звуковое радиовещание, телевидение, радиолокация, вычислительная техника (ЭВМ 1-го поколения). За период 1921-41 ежегодный мировой выпуск Э. л. возрос с одного до сотен млн. штук. Однако успехи полупроводниковой электроники обусловили бесперспективность дальнейшей разработки радиоаппаратуры на приёмно-усилительных лампах. В 60-70-х гг. разработка такой аппаратуры была прекращена; в результате ежегоднвш мировой выпуск приёмно-усилит. ламп за 1960-75 уменьшился примерно в 3 раза. Успехи полупроводниковой электроники не повлияли на развитие генераторных ламп (поскольку выходная мощность полупроводниковых приборов на радиочастотах не превышает 10-100 em). Выпускаемые генераторные лампы (триоды и тетроды) характеризуются мощностью от 50 вт до 3 Мет в непрерывном режиме и до 10 Мвт в импульсном. При разработке новых типов генераторных ламп гл. внимание уделяется линейности сеточной характеристики (зависимости анодного тока Э. л. от напряжения на первой - управляющей - сетке; у совр. ламп искажения 3-го порядка снижены до - 45 дб); увеличению коэфф. усиления по мощности (до 25- 30 дб); повышению кпд (напр., у триодов с магнитной фокусировкой электронов, используемых для высокочастотного нагрева, он доведён до 90% ); уменьшению сеточного тока и т. д.

Лит.: Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960; И и н г с т Т. [и др.], Лампы большой мощности с сеточным управлением - 1972 г., пер. с англ., "Труды Института инженеров по электротехнике и радиоэлектронике", 1973, т. 61, № 3, с. 121-52; К л е й н е р Э. Ю., Основы теории электронных ламп, М., 1974. В. Ф. Коваленко.

ЭЛЕКТРОННАЯ МИКРОСКОПИЯ, совокупность методов исследования с помощью электронных микроскопов (МЭ) микроструктуры тел (вплоть до атомно-молекулярного уровня), их локального состава и локализованных на поверхностях или в микрообъёмах тел электрич. и магнитных полей (микрополей). Наряду с этим прикладным значением Э. м. является самостоят, науч. направлением, предмет и цели к-рого включают: усовершенствование и разработку новых МЭ и др. корпускулярных микроскопов (напр., протонного микроскопа) и приставок к ним: разработку методик препарирования образцов, исследуемых в МЭ; изучение механизмов формирования электроннооптич. изображений; разработку способов анализа разнообразной информации (не только изображений), получаемой с помощью МЭ.

Объекты исследований в Э. м.- б. ч. твёрдые тела. В просвечивающих МЭ (ПЭМ), в к-рых электроны с энергиями от 1 кэв до 5 Мэв проходят сквозь объект, изучаются образцы в виде тонких плёнок, фольги (рис. 1), срезов и т. п. толщиной от 1 нм до 10 мкм (от 10 А до 105 А). Поверхностную и приповерхностную структуру массивных тел с толщиной существенно больше 1 мкм исследуют с помощью непросвечивающих МЭ: растровых (РЭМ) (рис. 2), зеркальных, ионных проекторов и электронных проекторов.

Можно изучать порошки, микрокристаллы, частицы аэрозолей и т. д., нанесённые на подложку: тонкую плёнку для исследования в ПЭМ или массивную подложку для исследования в РЭМ. Поверхностная геом. структура массивных тел изучается и методом реплик: с поверхности такого тела снимается отпечаток в виде тонкой плёнки углерода, коллодия, формвара и др., повторяющий рельеф поверхности и рассматриваемый в ПЭМ. Обычно предварительно на реплику в вакууме напыляется под скользящим (малым к поверхности) углом слой сильно рассеивающего электроны тяжёлого металла (напр., Pt), оттеняющего выступы и впадины геом. рельефа. При исследовании методом т. н. декорирования не только геом. структуры поверхностей, но и микрополей, обусловленных наличием дислокаций (рис. 3), скоплений точечных дефектов (см. Дефекты в кристаллах), ступеней роста кри-сталлич. граней, доменной структуры (см. Домены) и т. д., на поверхность образца вначале напыляется очень тонкий слой декорирующих частиц (атомы Au, Pt и др., молекулы полупроводников или диэлектриков), осаждающихся преим. на участках сосредоточения микрополей, а затем снимается реплика с включениями декорирующих частиц.

Спец. газовые микрокамеры - приставки к ПЭМ или РЭМ - позволяют изучать жидкие и газообразные объекты, неустойчивые к воздействию высокого вакуума, в т. ч. влажные биол. препараты. Радиационное воздействие облучающего электронного пучка довольно велико, поэтому при исследовании биол., полупроводниковых, полимерных и т. п. объектов необходимо тщательно выбирать режим работы МЭ, обеспечивающий минимальную дозу облучения.

Наряду с исследованием статич., не меняющихся во времени объектов Э. м. даёт возможность изучать различные процессы в динамике их развития: рост плёнок, деформацию кристаллов под действием переменной нагрузки, изменение структуры под влиянием электронного или ионного облучения и т. д. (исследования "in situ"). Вследствие малой инерционности электрона можно исследовать периодич. во времени процессы, напр, перемагничивание тонких магнитных плёнок, переполяризацию сегнето-электриков, распространение ультразвуковых волн и т. д., методами стробоскопической Э. м.: электронный пучок "освещает" образец импульсами, синхронными с подачей импульсного напряжения на образец, что обеспечивает фиксацию на экране прибора определ. фазы процесса точно так же, как это происходит в светооптич. стробоскопических приборах (рис. 4). Предельное временное разрешение при этом может, в принципе, составлять ок. 10-15 сек для ПЭМ (практически реализовано разрешение ~10-10 сек для ПЭМ и РЭМ).

Для интерпретации изображений аморфных и др. тел (размеры частиц к-рых меньше разрешаемого в МЭ расстояния), рассеивающих электроны диффузно, используются простейшие методы а м п л и т у д н о и Э. м. Напр., в ПЭМ контраст изображения, т. е. перепад яркостей изображения соседних участков объекта, в первом приближении пропорционален перепаду толщин этих участков. Для расчёта контраста изображений кристаллич. тел (рис. 5), имеющих регулярные структуры (при рассеянии частиц на таких телах происходит дифракция частиц), и решения обратной задачи - расчёта структуры объекта по наблюдаемому изображению - привлекаются методы фазовой Э. м.: решается задача о дифракции электронной волны (см. Волны де Бройля) на кристаллич. решётке. При этом дополнительно учитываются неупругие взаимодействия электронов с объектом: рассеяние на плазмонах, фононах и т. п. В ПЭМ и растровых ПЭМ (ПРЭМ) высокого разрешения получают изображения отд. молекул или атомов тяжёлых элементов; пользуясь методами фазовой Э. м., восстанавливают по изображениям трёхмерную структуру кристаллов и биол. макромолекул. Для решения подобных задач применяют, в частности, методы голографии, а расчёты производят на ЭВМ.

Разновидность фазовой Э. м.- интерференционная Э. м., аналогичная оптич. интерферометрии (см. Интерферометр): электронный пучок расщепляется с помощью электронных призм, и в одном из плеч интерферометра устанавливается образец, изменяющий фазу проходящей сквозь него электронной волны. Этим методом можно измерить, напр., внутр. электрич. потенциал образца.

С помощью лоренцевой Э. м., в к-рой изучают явления, обусловленные Лоренца силой, исследуют внутр. магнитные и электрич. поля или внешние поля рассеяния, напр, поля магнитных доменов в тонких плёнках (рис. 6), сегнето-электрических доменов (см. Домены), поля головок для магнитной записи информации и т. п.

Состав объектов исследуется методами микродифракции, т. е. электронографии локальных участков объекта, рентгеновского и катодолюминесцентного спектрального микроанализа (см. Катодолюминесценция, Спектральный анализ рентгеновский): регистрируются характеристические рентгеновские спектры или катодолюминесцентное излучение, возникающее при бомбардировке образца сфокусированным пучком электронов (диаметр электронного "зонда" менее 1 мкм). Кроме того, изучаются энергетич. спектры вторичных электронов, выбитых первичным электронным пучком с поверхности или из объёма образца.

Интенсивно разрабатываются методы количеств. Э. м.- точное измерение различных параметров образца или исследуемого процесса, напр, измерение локальных электрич. потенциалов (рис. 7), магнитных полей (рис. 8), микрогеометрии поверхностного рельефа и т. д. МЭ используются и в технологич. целях (напр., для изготовления микросхем методом фотолитографии).

Лит.: X о к с П., Электронная оптика и электронная микроскопия, пер. с англ., М., 1974; Стоянова И. Г., А н а с к и н И. Ф., Физические основы методов просвечивающей электронной микроскопии, М., 1972; Утевский Л. М., Дифракционная электронная микроскопия в металловедении, М., 1973; Электронная микроскопия тонких кристаллов, пер. с англ., М., 1968; Спивак Г. В., Сапарнн Г. В., Быков М. В., Растровая электронная микроскопия, "Успехи физических наук", 1969, т. 99, в. 4;ВайнштейнБ. К,, Восстановление пространственной структуры биологических объектов по электронным микрофотографиям, "Изв. АН СССР. Сер. физическая", 1972, т. 36, № 9; Quantitative scanning electron microscopy, L. - N. "У.- S. F., 1974. A. E. Лукьянов.

Применение электронной микроскопии в биологии позволило изучить сверхтонкую структуру клеток и внеклеточных компонентов тканей. На основании результатов, полученных с помощью МЭ (макс, разрешение к-рых для биол. объектов 12-6А, а увеличения - до 800- 1200 тыс.), начиная с 40-х гг. было описано тонкое строение мембран, митохондрий, рибосом и др. клеточных, а также внеклеточных структур, выявлены нек-рые макромолекулы, напр. ДНК. Растровая (сканирующая) Э. м, даёт возможность изучать тонкое строение поверхности клеток и тканевых структур не только фиксированных объектов, но и живых животных с твёрдым хитиновым покровом, напр, ряда членистоногих. Техника приготовления биол. препаратов для Э. м. включает процедуры, сохраняющие ткань в условиях глубокого вакуума под пучком электронов и реализующие высокое разрешение МЭ. Обычно объекты фиксируют химич. реагентами (альдегидами, четырёхокисью осмия или др.), обезвоживают (спиртом, ацетоном), пропитывают эпоксидными смолами и режут на спец. микротомах на ультратонкие срезы (толщ. 100-600 А). Для повышения контраста изображения клеток их обрабатывают "электронными красителями", сильно рассеивающими электроны (уранилацетатом, гидроокисью свинца и др.). Чтобы уменьшить повреждающее действие фиксатора на ткань, её можно заморозить, вытесняя затем воду ацетоном или спиртом при низкой темп-ре. Иногда применяют методы, исключающие действие фиксатора на клетки, напр. лиофилизацию: ткань быстро охлаждают до -150 или -196 °С и обезвоживают в высоком вакууме при низкой темп-ре. Перспективным оказался метод замораживания с травлением, основанный на получении платино-углеродной реплики со скола замороженного объекта. Благодаря этому методу внесены существенные изменения в представления о структуре клеточных мембран. Для изучения структуры биол. макромолекул и отдельных клеточных органоидов используют негативное контрастирование образцов. В этом случае исследуемые объекты выявляются в виде электроннопрозрачных элементов на тёмном фоне. Полученные в МЭ изображения молекул можно анализировать, применяя методы, основанные на дифракции света. Использование высоковольтной Э. м. (до 3 Мв) позволяет получить сведения о 3-мерной структуре клеток. При подготовке к исследованию живых членистоногих их обездвиживают с помощью эфирного или хлороформного наркоза в дозах, не вызывающих последующей гибели, и помещают в вакуумную камеру МЭ. В современной Э. м. широко применяют методы цитохимии, включая авторадиографию. Илл. см. т. 12, табл. XXVIII (стр. 336-337). Применение Э. м. в биологии существенно изменило и углубило прежние представления о тонком строении клетки.

Лит.: Киселев Н. А., Электронная микроскопия биологических макромолекул, М., 1965; Электронно-микроскопическая анатомия, пер. с англ., М., 1967; Балашов Ю. С., Миккау Н. Е., Изучение живых животных в растровом электронном микроскопе, "Природа", 1977, № 1; Tribe М. А., Е г a u t М. R., S n о о k R. К., Basic biology course, book 2 - Electron mic-roscop_y and cell structure, Camb,, 1975; Electron microscopy of enzymes. Principles and methods, v. 1-2, N. Y., 1973-74.

Н. А. Старосветская, Я. Ю. Комиссарчик.

ЭЛЕКТРОННАЯ МУЗЫКА, музыка, создаваемая с помощью генераторов низкой (звуковой) частоты, электрич. колебания к-рых записываются на магнитную ленту и воспроизводятся на магнитофоне. Одна из важных особенностей Э. м. состоит в том, что в ней отсутствует исполнитель в традиц. понимании, т. е. как необходимый посредник между композитором и слушателем. Осн. операции при сочинении Э. м.- поиски и отбор звучаний, запись их на магнитную ленту, обработка (деформация, модификация, трансформация), композиц. оформление. Получаемые при воспроизведении звуки могут комбинироваться со звуками электроинструментов (музыка для к-рых не относится к собственно Э. м.), певч. голосов, традиц. инструментов. В Э. м. используются т. н. синусоидные тоны (отличаются от обычных муз. звуков отсутствием обертонов и представляют собой звуки определённой высоты, лишённые тембровой окраски), а также звуки переменной и неопределённой высоты (микротоны). Понятие Э. м. введено ок. 1950 нем. физиком В, Майер-Эплером. Э. м. создаётся в спец. студиях (первая такая студия организована в 1951 в Кёльне по инициативе инж. X. Эймерта, комп. К. Штокхаузена и др.; подобная студия в Москве, основанная Е. А. Мурзиным, существует с 1967). К созданию Э. м. обращались Эймерт, Штокхаузен, сов. композиторы Э. В. Денисов, С. А. Губайдулина, А. Г. Шнитке, Э. Н. Артемьев и др. Э. м. применяется для создания особых звуковых эффектов в муз. сопровождении к фильмам, спектаклям, радиопередачам. Ю. Н. Холопов.

ЭЛЕКТРОННАЯ ОПТИКА, теория формирования потоков электронов и управления ими с помощью электрич. и магнитных полей, а также совокупность приборов и методов исследования, основанных на использовании таких потоков. Подробнее см. в ст. Электронная и ионная оптика.

ЭЛЕКТРОННАЯ ПРОМЫШЛЕННОСТЬ, отрасль промышленности, производящая электронные приборы (полупроводниковые, электровакуумные, пьезо-кварцевые приборы, изделия квантовой, криогенной и оптоэлектроники, интег
ральной оптики), резисторы, конденсаторы, штепсельные разъёмы и др. радиокомпоненты, специальное технологическое оборудование и аппаратуру (см. также Электроника); одна из отраслей , определяющих научно-технический прогресс.

Начало пром. произ-ва отд. видов электронных приборов относится к 1920-м гг. Ещё в 20-30-е гг. СССР имел приоритет в области создания и пром. выпуска новых типов электронных приборов: сверхвысокочастотных приборов, электроннолучевых трубок, фотоэлектронных умножителей и др. Бурное развитие Э. п. получила после 2-й мировой войны 1939 - 1945. Продукция Э. п. используется в различных областях науки и техники (космонавтика, радиофизика, кибернетика, вычислит, техника, связь, медицина и др.), при создании совр. систем управления, радиотехнич. устройств, приборов и средств автоматизации в пром-сти, с. х-ве, на транспорте и для оборонных целей.

В 1961 был создан Гос. к-т Сов. Мин. СССР по электронной технике, а в 1965 - Мин-во электронной промышленности СССР.

Э. п.- отрасль, отличающаяся высоким уровнем концентрации произ-ва, специализации и кооперирования, комплексностью развития. Крупные специализир. предприятия Э. п. выпускают широкую номенклатуру электронных изделий. Существ, роль в развитии специализации и кооперирования произ-ва играют создание типовых параметрич. рядов важнейших изделий электронной техники, разработка базовых прогрессивных конструкций и технологич. процессов, комплексная стандартизация. С развитием совр. направлений в электронике коренным образом изменилась технология изготовления электронных приборов. Традиц. приёмы обработки материалов вытесняются технологич. процессами, осн. на применении фотолитографии, электроннолучевой, плазменной и плазмохимич. обработке, диффузии, ионной имплантации. Осн. особенность применяемых в отрасли исходных материалов - их сверхвысокая чистота, т. к. наличие примесей определяет технич. и эксплуатац. характеристики электронных приборов.

Э. п. характеризуется быстрым ростом объёмов произ-ва, расширением номенклатуры полупроводниковых (особенно интегральных схем), квантовых, криоэлектронных приборов, а также приборов, осн. на акусто- и магнитоэлектронике; быстро расширяется произ-во микро-ЭВМ, цветных кинескопов, электронных калькуляторов, в т. ч. программируемых, видеомагнитофонов, электронных часов, стереосистем высшего класса, СВЧ-печей и др.

Э. п. развивается опережающими по сравнению с др. отраслями промышленности темпами. В 1966-75 объём производства увеличился в несколько раз, производительность труда - более чем в 4 раза. Осн. пути совершенствования произ-ва в Э. п.- комплексная механизация и автоматизация на основе создания высокопроизводит. оборудования и аппаратуры, автоматизир. линий, управляемых ЭВМ, и внедрения прогрессивных технологич. процессов, базирующихся на передовых научно-технич. достижениях.

Произ-во электронной техники получило большое развитие в зарубежных социалистич. странах. Интегральные микросхемы, полупроводниковые приборы, резисторы, кинескопы и др. выпускаются предприятиями ВНР, ГДР, ПНР, СРР, ЧССР, СФРЮ.

Значит, уровня развития достигла Э. п. в капиталистич. странах. Её отличает высокая степень монополизации и концентрации произ-ва (особенно в США). Имеются также небольшие предприятия, специализирующиеся на выпуске отд. элементов приборов, измерительной аппаратуры и др. электронных комплектующих устройств. Наиболее крупные фирмы США - "фэрчайлд камера энд инструменте", "Нэшонал семикондакторс", "Рейдио корпорейшен оф Америка", "Интел", чРокуэлл", "Тексас инструменте", "Моторола", "Мостек"; Японии-"Ниппон электрик компани", "Тосиба дэнки", "Мацусита дэнки"; ФРГ - "Си-менс", "АЭГ - Телефункен"; Италии - "СГС - АТЕС"; Великобритании - "Плесси", "Инглиш электрик", "Мал-лард"; Франции - "Томпсон - ЦСФ", "Сескозэм" (см. также Электротехнические и электронные монополии).

Лит.: Опыт организации и работы хозрасчетных объединений в промышленности. [Сб. статей], Л., 1970; Экономика электронной промышленности, М., 1976.

А. И. Шокин.

ЭЛЕКТРОННАЯ ПУШКА, устройство для получения потоков (пучков) электронов в объёме, из к-poro удалён воздух (в вакууме). Электроны в Э. п. вылетают из катода и ускоряются электрич. полем (рис. 1). Испускание электронов из катода происходит гл. обр. в процессах термоэлектронной эмиссии, эмиссии из плазмы, автоэлектронной эмиссии (см. Туннельная эмиссия) и фотоэлектронной эмиссии. Формирование заданного распределения электронного пучка на выходе из Э. п. осуществляется подбором конфигурации ц величины электрич. и магнитного полей и является предметом электронной оптики (см. Электронная и ионная оптика). Термин "Э. п." применяют как к устройствам для формирования высокоинтенсивных электронных пучков (сильноточные Э. п.), так и к более простым совокупностям электродов для получения пучков малой интенсивности (используемых в клистронах, магнетронах, электроннолучевых приборах); последние часто наз. электронными прожекторами. Конструкции и параметры слаботочных Э. п. весьма разнообразны. Схема одной из них приведена на рис. 2. Э. п. находят широкое применение в технике и науч. исследованиях, в частности в телевиз. системах, электронных микроскопах, электроннооптич. преобразователях, аппаратах для плавки и сварки металлов, возбуждения газовых лазеров и т. д. Токи электронных пучков в слаботочных Э. п. могут иметь значения в пределах от десятков мка до десятков а, а энергии электронов доходить до сотен кэв.

В сильноточной Э. п., являющейся двухэлектродным прибором (диодом), генерируются электронные пучки с существенно большими токами-до 104 - 107 а, энергией ускоренных электронов до 10-20 Мэв и мощностью < 1013 вm. Обычно в сильноточной Э. п. при плотностях тока > 1 ка/см2используются холодные катоды со "взрывной эмиссией". Взрывная эмиссия возникает при нагреве и взрыве микроострий на поверхности катода током автоэлектронной эмиссии (см. Туннельная эмиссия). Ионизация паров приводит к формированию у поверхности катода плотной плазмы и увеличению средней плотности тока эмиссии в 103-104 раз. Прикатодная плазма расширяется к аноду со скоростью v = (2-3)*106 см/сек и замыкает состоящий из катода и анода диод за время d/v (d - расстояние катод - анод), что ограничивает длительность тока пучка через диод временами ~ 10-8 - 10-6 сек.

При малых токах и отсутствии разреженной плазмы между катодом и анодом движение электронов в сильноточной Э. п. с учётом релятивистских поправок подобно движению в слаботочной Э. п. Отличит, особенность Э. п. в режимах с большими токами состоит в сильном влиянии магнитного поля пучка на траектории электронов. Как показывает расчёт, при токе диода I > 8,5 (E / mc2) * ( R / d) (ка) (рис. 3, Е - полная энергия электронов у анода, mс2 - энергия покоя; см. Относительности теория) собств. магнитное поле потока электронов заворачивает электроны к оси этого потока и сжимает поток к центру анода. Это сжатие пучка у анода приводит к экранировке центральной области катода пространственным зарядом пучка, вследствие чего электроны испускаются гл. обр. кромкой катода, что хорошо видно на рис. 3. Эффект сжатия наиболее ярко проявляется, если пространств, заряд и его электрич. поле частично компенсируются ионами плазмы, заполняющей приосевую область диода или покрывающей поверхность анода. Плазма в диоде создаётся либо с помощью внеш. источников, либо в результате нагрева анода электронным пучком. При этом на аноде плотность тока сфокусированного пучка достигает 106- 108 а/см2, а плотность потока энергии < 1013 вm/см2. Представление о пучке в этом случае условно, т. к. поперечная скорость электронов сравнима с продольной.

Если на аноде есть слой плотной плазмы, то ионы ускоряются электрич. полем к катоду, а ток в диоде переносится и электронами, и ионами. Теория и расчёт, подтверждаемые экспериментами, предсказывают, что в результате взаимодействия магнитного поля с электронами их ток с увеличением R/d (в отличие от ионного) перестаёт нарастать. Это открывает возможность получения в сильноточных Э. п. ионных пучков с током > 106 а. Эффект подавления электронных токов на периферии диода магнитными полями, наз. магнитной изоляцией, используется в вакуумных передающих линиях, соединяющих источник питания с диодом Э. п. и выдерживающих без пробоя напряжённость электрического поля <4*106в/см.

Сильноточные Э. п. используются для нагрева плазмы, коллективного ускорения заряж. частиц, получения тормозного излучения и потоков нейтронов, генерации СВЧ-колебаний и лазерного излучения, в исследованиях по физике твёрдого тела.

Лит.: АлямовскийИ. В., Электронные пучки и электронные пушки, М., 1966; М е с я ц Г. А., Генерирование мощных наносекундных импульсов, М., 1974; Смирнов В. П., Получение сильноточных пучков электронов, "Приборы и техника эксперимента", 1977, в. 2. В. П. Смиюное.

ЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ для химического анализа (ЭСХА), то же, что фотоэлектронная спектроскопия.

ЭЛЕКТРОННАЯ ТЕОРИЯ, классическая (неквантовая) теория электромагнитных процессов, в основе к-рой лежат представления о строении вещества из электрически заряженных частиц - электронов и атомных ядер (см. Лоренца - Максвелла уравнения).

ЭЛЕКТРОННАЯ ТЕРАПИЯ, применение пучков ускоренных электронов с леч. целями; один из видов лучевой терапии.

ЭЛЕКТРОННАЯ ФОТОВСПЫШКА, см. в ст. Лампа-вспышка.

ЭЛЕКТРОННАЯ ФОТОГРАФИЯ, метод воспроизведения изображения объекта на фотоэлектронной эмульсии (т. н. электронно-графич. пластинка) с помощью электронных пучков, испускаемых фотокатодом, на к-рый проецируется световое изображение объекта. Э. ф. применяется в астрономии для изучения структуры слабых протяжённых объектов (туманностей, галактик) и их спектров, для исследований двойных звёзд, астро-фотометрич. измерений и др. См. также Электронная камера.

Лит.: Курс астрофизики и звездной астрономии, пол гтд. А. А. Михайлова, 3 изд., т. 1, М., 1973.

ЭЛЕКТРОННАЯ ЭМИССИЯ, испускание электронов поверхностью твёрдого тела или жидкости. Э. э. возникает в случаях, когда под влиянием внеш. воздействий часть электронов тела приобретает энергию, достаточную для преодоления потенциального барьера на границе тела, или если под действием электрич. поля поверхностный потенциальный барьер становится прозрачным для части электронов, обладающих внутри тела наибольшими энергиями. Э. э. может возникать при нагревании тел {термоэлектронная эмиссия), при бомбардировке электронами (вторичная электронная эмиссия), ионами (ионно-электронная эмиссия) или фотонами (фотоэлектронная эмиссия). В определённых условиях (напр., при пропускании тока через полупроводник с высокой подвижностью электронов или при приложении к нему сильного импульса электрич. поля) электроны проводимости могут "нагреваться" значительно сильнее, чем кристаллич. решётка, и часть из них может покинуть тело (эмиссия горячих электронов).

Для наблюдения Э. э. необходимо создать у поверхности тела (эмиттера) внеш. ускоряющее электроны электрич. поле, к-рое "отсасывает" электроны от поверхности эмиттера. Если это поле достаточно велико (> 102 в/см), то оно уменьшает высоту потенциального барьера на границе тела и соответственно работу выхода (Шотки эффект), в результате чего Э. э. возрастает. В сильных электрич. полях (~107в/см) поверхностный потенциальный барьер становится очень тонким и возникает туннельное "просачивание" электронов сквозь него (туннельная эмиссия), иногда наз. также автоэлектронной эмиссией. В результате одноврем. воздействия 2 или более факторов может возникать термоавто- или фотоавтоэлектронная эмиссия. В очень сильных импульсных электрич. полях (~ 5*107в/см) туннельная эмиссия приводит к быстрому разрушению (взрыву) микроострий на поверхности эмиттера и к образованию вблизи поверхности плотной плазмы. Взаимодействие этой плазмы с поверхностью эмиттера вызывает резкое увеличение тока Э. э. до 106 а при длительности импульсов тока в неск. десятков нсек (взрывная эмисси я). При каждом импульсе тока происходит перенос микроколичеств (~ 10-11 г) вещества эмиттера на анод.

Лит.: Добрецов Л. Н., Г о м о юn н о в а М. В., Эмиссионная электроника, М., 1966; Бугаев С. П., Воронцов-Вельяминов П. Н., Искольд-с к и и А. М., Месяц С. А., П р о с к у р о в с к и и Д. И., Ф у р с е и Г. Н., Явление взрывной электронной эмиссии, в сб.: Открытия в СССР 1976 года, М., 1977.

Т. М. ЛиАшиц.

ЭЛЕКТРОННОАКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ, устройство для преобразования акустич. сигналов в электрические. Э. п. представляет собой электроннолучевой прибор с экраном в виде металлич. диска с отверстиями, в к-рые впаяны тонкие остеклованные (для изоляции от диска) проволочки. Внутренняя поверхность диска отшлифована и покрыта слоем диэлектрика с большим коэфф. вторичной эмиссии. С внеш. стороны диска проволочки электрически соединены с элементами матрицы из пьезоэлектрич. материала. Под действием акустич. волны на элементах матрицы возникают электрич. потенциалы, к-рые по проволочкам передаются на внутр. поверхность диска (экрана), при этом распределение зарядов на слое диэлектрика соответствует распределению амплитуд звукового давления в плоскости матрицы. Электронный луч, обегая поочерёдно все участки экрана (так же, как в передающей телевиз. трубке), "считывает" электронное изображение акустич. поля и преобразует его в последовательность электрич. сигналов.

Э. п. используют в устройствах ультразвуковой дефектоскопии и подводного звуковидения, в приборах мед. диагностики, как быстродействующие электронные коммутаторы и т. д.

Лит.: Грасюк Д. С. [и др.], Ультразвуковой интроскоп с новым электронно-акустическим преобразователем "У-55", "Акустический журнал", 1965, т. 11, в. 4; Прохоров В. Г., Семенов С. П., О построении систем акустической голографии, в сб.: Современное состояние и перспективы развития голографии, Л., 1974. В. Д. Свет.

ЭЛЕКТРОННО-ДЫРОЧНАЯ ЖИДКОСТЬ, конденсированное состояние неравновесной электронно-дырочной плазмы в полупроводниках (см. Плазма твёрдых тел). Э.-д. ж. образуется, когда концентрация электронов и дырок (свободных или связанных в экситоны) превышает нек-рое, зависящее от темп-ры критич. значение пкр. Эта концентрация легко достигается с помощью инжекции носителей, освещения полупроводника и т. п. При достижении пкр система неравновесных носителей тока претерпевает фазовый переход, подобный переходу газ - жидкость, в результате к-рого она расслаивается на две фазы: капли относительно плотной Э.-д. ж., окружённые газом экситонов, и свободных носителей. При этом плотность и кристаллич. структура полупроводника практически не затрагиваются. В отличие от обычных жидкостей, в Э.-д. ж. отсутствуют тяжёлые частицы (ионы, атомные ядра). Поэтому Э.-д. ж. обладает сильно выраженными квантовыми свойствами: она не может кристаллизоваться, а остаётся жидкостью вплоть до самых низких темп-р (см. Квантовая жидкость); она не может быть жидкостью молекулярного типа, т. е. состоять из экситонов или экситонных молекул, а состоит из квазисвободных электронов и дырок, т. е. подобна жидкому металлу.

Кулоновское взаимодействие, связывающее частицы в Э.-д. ж., ослаблено диэлектрич. проницаемостью кристалла. Поэтому по сравнению с обычными жидкостями энергии связи частиц Л и их концентрации по в Э.-д. ж. весьма малы (Е0 ~ 10-2 - 10-1эв, n0 ~ 1017 - 1019см~3). Область температур Т, при к-рых возможно существование Э.-д. ж., по порядку величины определяется соотношением: Т <= (0,1E о/к) ~ 10-100К (к - Болъцмана постоянная).

Диаметр капель обычно ~ 1-10 мкм, однако удаётся наблюдать капли с диаметрами до 1 мм. Капли можно ускорять до скоростей порядка скорости звука в кристалле, т. е. это подвижные области высокой металлич. проводимости Внутри практически не проводящего (при низких Т) кристалла. Э.-д. ж. можно рассматривать как устойчивые макроскопич. "сгустки" введённой в кристалл энергии возбуждения. Эта энергия выделяется в процессе рекомбинации электронов и дырок частично в виде электромагнитного излучения (излучательные переходы), так что Э.-д. ж. являются интенсивными источниками света. Э.-д. ж. наиболее полно изучена в Ge и Si, однако есть указания на её существование и в др. полупроводниках. Лит. см. при ст. Экситон.

Л. В. Келдыш.

ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД (р - и-переход), область полупроводника, в к-рой имеет место пространственное изменение типа проводимости (от электронной п к дырочной р). Поскольку в р-области Э.-д. п. концентрация дырок гораздо выше, чем в w-области, дырки из р-области стремятся диффундировать в электронную область. Электроны диффундируют в р-область. Однако после ухода дырок в р-области остаются отрицательно заряженные акцепторные атомы, а после ухода электронов в "-области - положительно заряженные донорные атомы. Т. к. акцепторные и донорные атомы неподвижны, то в области Э.-д. п. образуется двойной слой пространственного заряда - отрицательные заряды в р-области и положит, заряды в n-области (рис. 1).

Возникающее при этом контактное электрич. поле по величине и направлению таково, что оно противодействует диффузии свободных носителей тока через Э.-д. п.; в условиях теплового равновесия при отсутствии внеш. электрич. напряжения полный ток через Э.-д. п. равен нулю. Т. о., в Э.-д. п. существует динамич. равновесие, при к-ром небольшой ток, создаваемый неосновными носителями (электронами в р-области и дырками в n-области), течёт к Э.-д. п. и проходит через него под действием контактного поля, а равный по величине ток, создаваемый диффузией осн. носителей (электронами в я-области и дырками в р-области), протекает через Э.-д. п. в обратном направлении. При этом осн. носителям приходится преодолевать контактное поле (потенциальный барьер). Разность потенциалов, возникающая между р- и и-областями из-за наличия контактного поля (контактная разность потенциалов или высота потенциального барьера), обычно составляет десятые доли вольта.

Внешнее электрич. поле изменяет высоту потенциального барьера и нарушает равновесие потоков носителей тока через него. Если положит, потенциал приложен к р-области, то внеш. поле направлено против контактного, т. е. потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число осн. носителей, способных преодолеть потенциальный барьер. Концентрация неосновных носителей по обе стороны Э.-д. п. увеличивается (инжекция неосновных носителей), одновременно в р- и и-области через контакты входят равные количества осн. носителей, вызывающих нейтрализацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через Э.-д. п. При повышении приложенного напряжения этот ток экспоненциально возрастает. Наоборот, приложение положит, потенциала к п-области (обратное смещение) приводит к повышению потенциального барьера. При этом диффузия осн. носителей через Э.-д. п. становится пренебрежимо малой.

В то же время потоки неосновных носителей не изменяются, поскольку для них барьера не существует. Потоки неосковных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через Э.-д. п. течёт ток h (ток насыщения), к-рый обычно мал и почти не зависит от приложенного напряжения. Т. о., зависимость тока I через Э.-д. п. or приложенного напряжения U (вольтам-перная характеристика) обладает резко выраженной нелинейностью (рис. 2). При изменении знака напряжения ток через Э.-д. п. может меняться в 105- 106 раз. Благодаря этому Э.-д. п. является вентильным устройством, пригодным для выпрямления переменных токов (см. Полупроводниковый диод). Зависимость сопротивления Э.-д. п. от U позволяет использовать Э.-д. п. в качестве регулируемого сопротивления (вариатора).

При подаче на Э.-д. п. достаточно высокого обратного смещения U = Unp возникает электрич. пробой, при к-ром протекает большой обратный ток (рис. 2). Различают лавинный пробой, когда на длине свободного пробега в области объёмного заряда носитель приобретает энергию, достаточную для ионизации кристаллич. решётки, туннельный (зинеровский) пробой, возникающий при туннелирова-нии носителей сквозь барьер (см. Туннельный эффект), и тепловой пробой, связанный с недостаточностью теплоотвода от Э.-д. п., работающего в режиме больших токов.

От приложенного напряжения зависит не только проводимость, но и ёмкость Э.-д. п. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между п- и р-областями полупроводника и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды являются неподвижными и связанными с кристаллич. решёткой ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением ёмкости Э.-д. п. При прямом смещении к ёмкости слоя объёмного заряда (наз. также зарядной ёмкостью) добавляется т. н. диффузионная ёмкость, обусловленная тем, что увеличение напряжения на Э.-д. п. приводит к увеличению концентрации неосновных носителей, т. е. к изменению заряда. Зависимость ёмкости от приложенного напряжения позволяет использовать Э.-д. п. в качестве варактора - прибора, ёмкостью к-рого можно управлять, меняя напряжение смещения (см. Параметрический полупроводниковый диод).

Помимо использования нелинейности вольтамперной характеристики и зависимости ёмкости от напряжения, Э.-д. п. находит многообразные применения, основанные на зависимости контактной разности потенциалов и тока насыщения от концентрации неосновных носителей. Их концентрация существенно изменяется при различных внеш. воздействиях - тепловых, механических, оптических и др На этом основаны различного рода датчики: темп-ры, давления, ионизирующих излучений и т. д. Э.-д. п. использу; ется также для преобразования световой энергии в электрическую (см. Солнечная батарея).

Э.-д. п. являются основой разного рода полупроводниковых диодов, а также входят в качестве составных элементов в более сложные полупроводниковые приборы - транзисторы, тиристоры и т. д. Инжекция и последующая рекомбинация неосновных носителей в Э.-д. п. используются в светоизлучающих диодах и инжекционных лазерах.

Э.-д. п. может быть создан различными путями: 1) в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (р-область), а в другой - акцепторной (n-область); 2) на границе двух различных полупроводников с разными типами проводимости (см. Полупроводниковый гетеропереход); 3) вблизи контакта полупроводника с металлом, если ширина запрещённой зоны полупроводника меньше разности работ выхода полупроводника и металла; 4) приложением к поверхности полупроводника с электронной (дырочной) проводимостью достаточно большого отрицат. (положит.) потенциала, под действием к-рого у поверхности образуется область с дырочной (электродной) проводимостью (инверсный слой).

Если Э.-д. п. получают вплавлением примесей в монокристаллич. полупроводник (напр., акцепторной примеси в кристалл с проводимостью и-типа), то переход от п- к р-области происходит скачком (резкий Э.-д. п.). Если используется диф; фузия примесей, то образуется плавный Э.-д. п. Плавные Э.-д. п. можно получать также выращиванием монокристалла из расплава, в к-ром постепенно изменяют содержание и характер примесей. ПОЛУЧИЛ распространение метод ионного внедрения примесных атомов, позволяющий создавать Э.-д. п. заданного профиля. Лит.: С т и л ь б а н с Л. С., Физика полупроводников, М., 1967; П и к у с Г. Е., Основы теории полупроводниковых приборов, М., 1965; Федотов Я. А., Основы физики полупроводниковых приборов, 2 изд., М , 1970; СВЧ-полупроводниковые приборы и их применение, пер. с англ., М., 1972; Бонч-Бруевич В. Л., К а л а ш н н к о в С. Г., Физика полупроводников, М., 1977. Э. М. Эпштеин.

ЭЛЕКТРОННОЕ ЗЕРКАЛО, электрическая или магнитная система, отражающая пучки электронов и предназначенная либо для получения с помощью таких пучков электроннооптических изображений, либо для изменения направления движения электронов. В значит, своей части Э. з.- системы, симметричные относительно нек-рой оси (см. Электронная и ионная оптика). Электростатич. осесимметричные Э. з. (рис. 1) используют для создания правильных электроннооптических изображений объектов. Если последний электрод такого Э. з. сплошной и электроны меняют направление движения непосредственно вблизи его поверхности, то можно получить увеличенное изображение микрорельефа этой поверхности. В зеркальном микроскопе используется именно это свойство Э. з. Цилиндрические Э. з. с "двухмерным" (оно не зависит от координаты х) электрическим (рис. 2) или магнитным полем применяют для изменения направления электронных пучков причём для электронов, движущихся в средней плоскости зеркала, угол падения равен углу отражения, подобно тому как это имеет место при отражении луча света от оптич. зеркала. Т. н. трансаксиальные Э. з. (рис. 3, 4) отличаются малыми аберрациями (погрешностями изображений) в направлении, параллельном средней плоскости Э. з.

Лит.: Г лазер В., Основы электронной оптики, пер. с нем.,, М, 1957; К е л ь м а н В. М., Я в о р С. Я., Электронная оптика, 3 изд., 1968. В. М. Кельман, И. В. Родникова.

ЭЛЕКТРОННОЕ КОПИРОВАНИЕ, электронно-искровое, электроискровое, процесс копирования документов, основанный на использовании теплового действия электрич. (искрового) разряда. Э. к. применяют преим. при изготовлении ротаторных (трафаретных) и реже офсетных печатных форм для оперативной полиграфии. Э. к. осуществляется в электронно-искровых копировальных аппаратах (рис.). В аппарате листовой оригинал (чёрно-белый или цветной, выполненный карандашом, тушью, машинописным или типографским способом) и заготовку для печатной формы - пластикатную электропроводную плёнку - закрепляют на роторе (металлич. цилиндре). При вращении ротора и равномерном перемещении оптич. головки участки оригинала поочерёдно проходят под оптич. головкой, в к-рой размещаются осветитель и фотоэлемент. Луч света, формируемый осветителем, отражается от поверхности оригинала (при этом интенсивность светового потока меняется в зависимости от отражат. способности участка, над к-рым проходит головка) и попадает на фотоэлемент, где световой поток преобразуется в электрич. сигнал, к-рый после усиления поступает на игольчатый электрод, перемещающийся синхронно с оптич. головкой. Между электродом и поверхностью ротора возникает искровой разряд, прожигающий в заготовке отверстия в местах, соответствующих тёмным участкам изображения оригинала. Процесс изготовления копии длится 5-10 мин. Разрешающая способность электронно-искровых копировальных аппаратов 60-240 линий на 1 мм.

Лит.: А л ф е р о в А. В., Р е з н и к И. С., Шорин В. Г., Оргатехника, М., 1973.

А. В. Алфёров.

ЭЛЕКТРОННОЛУЧЕВАЯ ОБРАБОТКА, см.в ст. Электрофизические и электрохимические методы обработки.

ЭЛЕКТРОННОЛУЧЕВАЯ ПЕЧЬ, разновидность электрической печи, в к-рой электрич. энергия преобразуется в тепловую непосредственно в расплавляемом металле в результате соударения с ним электронов, вылетающих из электронной пушки. Электроны разгоняются электрич. полем высокого напряжения (10- 35 кв) в условиях низкого давления (ниже 10 мн/м2). Э. п., применяемые в металлургии чистых металлов и сплавов, состоят из след, узлов и систем (рис.): излучатель электронов (электронная пушка) с катодом, ускоряющим анодом и магнитной фокусирующей системой; плавильная камера со шлюзовыми устройствами и кристаллизатором (изложницей или тиглем) для металла; вакуумная система; механизмы перемещения переплавляемого металла; блок электропитания с системой автоматич. регулирования. Переплавляемый металл подаётся в Э. п. (через вакуумный затвор) в виде т. н. расходуемого электрода, слитка, монокристалла, порошка и т. д. Расплавленный металл стекает каплями либо в водоохлаждаемый кристаллизатор - изложницу (при наплавлении слитка) или тигель (при плавке в гарнисаже с целью получения фасонных отливок и при выращивании монокристаллов),- либо в холодные водоохлаждаемые подовые ёмкости (при рафинировании жидкого металла). В пром-сти работают Э. п. мощностью более 1 Мет для переплава слитков стали диаметром до 1000 мм, жаропрочных сплавов - до 500 мм, тугоплавких металлов - до 280 мм. Электрич. кпд Э. п. 0,6-0,8. Удельный расход электроэнергии 1-2 для стали, 10-15 для ниобия, тантала, молибдена и 20-40квт * ч/кг для вольфрама. Проектируют (1978) Э. п. мощностью до 7,2 Мет для переплава стальных слитков диаметром до 2000 мм (с холодным подом).

Лит.: Электронные плавильные печи, М., 1971; Егоров А. В..Моржин А. Ф., Электрические печи, М., 1975.

А. В. Егоров, А. Ф. Моржин.

ЭЛЕКТРОННОЛУЧЕВАЯ ПЛАВКА, плавка в электроннолучевой печи, происходящая при высокой темп-ре и глубоком вакууме, что обеспечивает протекание мн. реакций рафинирования, невозможных в иных условиях (напр., при вакуумной дуговой плавке и индукционной плавке в тиглях из тугоплавких окислов). Применяется для получения особо чистых тугоплавких металлов и сплавов, крупных слитков из стали и сплавов для деталей ответств. назначения и в др. случаях. Осн. достоинства Э. п.: регулирование в широких пределах скорости наплавления, определяющей благоприятную для последующей обработки макроструктуру слитка; возможность высокого перегрева металлов, позволяющего в сочетании с глубоким вакуумом удалить вредные примеси (напр., цветные металлы); глубокая дегазация металла в вакууме; отсутствие контакта жидкого металла с загрязняющей его футеровкой; переплав практически любой шихты и возобновление процесса плавки после случайного перерыва без ухудшения качества слитка. При получении слитков большой массы (неск. десятков т) важное достоинство процесса - возможность переплава сравнительно небольших заготовок, попеременно подаваемых в зону плавления. Жидкий металл поступает в кристаллизатор либо непосредственное переплавляемой заготовки, либо из промежуточной ёмкости, где он дополнительно рафинируется. В результате Э. п. в 2-4 раза снижается содержание газовых примесей и неметаллических включений, повышаются плотность металла, изотропность его свойств. Ответственные изделия, напр, роторы мощных паровых турбин, изготовленные из металла, выплавленного в электроннолучевой печи, обладают вдвое более высоким сопротивлением хрупкому разрушению по сравнению с ротором из стали, выплавленной, напр., в обычной дуговой печи, и, следовательно, более надёжны.

Лит.: Введение в технологию электроннолучевых процессов, пер. с англ., [М.], 1965. Я. М. Васильев.

ЭЛЕКТРОННОЛУЧЕВАЯ СВАРКА, см. в ст. Сварка.

ЭЛЕКТРОННОЛУЧЕВАЯ ТРУБКА (ЭЛТ), обобщённое название ряда электроннолучевых приборов, предназначенных для различного рода преобразований электрич. или световых сигналов. ЭЛТ, служащие для преобразования электрич. сигналов в видимые изображения, в зависимости от их функционального назначения делятся на приёмные телевиз. трубки (кинескопы); осциллографические электроннолучевые трубки; знакопечатающие электроннолучевые трубки; индикаторные трубки, используемые в радиолокационных станциях (см. Индикатор); отображения информации устройства (в т. ч. трубки с памятью - потенциалоскопы) и др. Преобразование световых изображений в телевиз. сигналы осуществляется передающими телевизионными трубками. Существуют ЭЛТ, в к-рых как входные, так и выходные сигналы представлены в форме электрич. сигналов; в таких ЭЛТ выходные сигналы отражают тот или иной вид преобразования, производимого над входными: математич. обработку, задержку во времени, изменение порядка следования или частотного спектра и т. д.

Лит.: Жигарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972. В. Л. Герус.

ЭЛЕКТРОННОЛУЧЕВОЙ ПЕРЕКЛЮЧАТЕЛЬ, электроннолучевой коммутатор, электроннолучевой прибор, служащий для безынерционного переключения слаботочных электрич. цепей. Основан на управлении положением электронного- луча (пучка электронов), к-рый может в заданной последовательности направляться на изолированные друг от друга электроды - ламели, подключённые к внеш. цепям. Ток электронного луча может при этом управляться внеш. сигналом. Большого распространения не получил. В нек-рых случаях функции Э. п. успешно выполняются трохотроном.

ЭЛЕКТРОННОЛУЧЕВЫЕ ПРИБОРЫ (ЭЛП), класс электровакуумных электронных приборов, предназначенных для различного рода преобразований информации, представленной в форме электрич. или световых сигналов; отличит, особенность таких приборов - использование потока электронов, сконцентрированных (сфокусированных) в узкий пучок (электронный луч), управляемый как по интенсивности, так и по положению в пространстве. 3 простейшем случае (рис. 1) пучок формируется электронной пушкой; управляется по интенсивности изменением потенциала управляющего электрода (модулятора); отклоняется в двух взаимноперпендикулярных направлениях с помощью поперечных по отношению к оси ЭЛП электрич. или магнитных полей, создаваемых отклоняющими пластинами или внешними по отношению к ЭЛП магнитными катушками; направляется в ту или иную точку двумерной мишени. Взаимодействие пучка с мишенью обеспечивает преобразование сигналов в зависимости от свойств и структуры мишени.

Если мишень ЭЛП представляет собой люминесцентный экран, изготовленный из люминофоров (светящихся при бомбардировке их электронами), то такой ЭЛП способен преобразовывать временные последовательности электрич. сигналов в двумерное распределение яркости свечения экрана, т. е. визуализировать электрич. сигналы. Возможны 2 способа такой визуализации. При 1-м способе отображаемые электрич. сигналы поступают на отклоняющие пластины или катушки и управляют положением пучка на экране; в результате на экране создаётся графич. изображение сигналов. Напр., если к горизонтально отклоняющим пластинам приложить линейно изменяющееся напряжение, отклоняющее луч в горизонтальном направлении с постоянной скоростью, а на пластины вертикального отклонения подать изучаемый переменный электрич. сигнал, то на экране вычерчивается осциллограмма этого сигнала в прямоугольной системе координат. ЭЛП, предназначенные для реализации такого режима, наз. осциллографическими электроннолучевыми трубками. Если управлять положением луча одновременно по двум направлениям (горизонтальному и вертикальному) специально сформированными сигналами, то можно получать на экране чертежи, цифры, буквы и иные символы, несущие соответствующую информацию. Такие ЭЛП используются, в частности, в отображения информации устройствах. Разновидность ЭЛП для отображения знаков - знакопечатающие электроннолучевые трубки. При 2-м способе электронный луч перемещается по поверхности экрана по определённому закону; в процессе отклонения (развёртки) входной сигнал поступает на управляющий электрод, изменяет интенсивность луча и, следовательно, яркость свечения различных точек экрана, создавая на нём полутоновое изображение, соответствующее последовательности электрич. сигналов. На этом принципе основано действие таких ЭЛП, как кинескоп (преобразует телевиз. сигнал в телевнз. изображение), и и д и к а т о р н а я электроннолучевая трубка (применяется, напр., для создания радиолокац. изображения).

Если в качестве мишени использовать светочувствит. слой, изменяющий свои электрич. свойства (напр., электропроводность) под действием света, то ЭЛП с такими мишенями способны осуществлять обратное преобразование двумерного оптич. изображения в последовательность телевиз. сигналов. При проецировании на такую мишень передаваемого изображения происходят локальные изменения потенциала поверхности слоя, что приводит к изменению тока, протекающего через слой, в процессе сканирования мишени электронным лучом постоянной интенсивности по принятому в телевидении закону развёртки. Эти изменения тока во времени и представляют собой телевиз. сигнал. ЭЛП, предназначенные для такого преобразования, наз. передающими телевизионными трубками.

Существуют ЭЛП, в к-рых управляемый по интенсивности входным сигналом пучок изменяет к.-л. оптич. свойство мишени, что в процессе отклонения луча приводит к локальным изменениям (модуляции) светового потока от интенсивного внеш. источника света, равномерно освещающего поверхность мишени (рис. 2). Промодулированный световой поток создаёт оптич. изображение, проецируемое с помощью объектива на большой экран (см., напр., Проекционное телевидение). Такие ЭЛП наз. светоклапанными; в них для модуляции света посредством воздействия электронов на вещество используют эффекты окрашивания нек-рых кристаллов (см. Скиатрон), деформацию масляных, термопластич. или иных пленок, электро-оптич. эффекты в кристаллах и др.

Существуют ЭЛП с мишенями, представляющими собой диэлектрич. слой на электропроводящей подложке. С помощью электронного луча на такой мишени можно накапливать электрические заряды. Последовательность входных электрических сигналов преобразуется в процессе развёртки в зарядный (потенциальный) рельеф на мишени, который сохраняется в течение необходимого промежутка времени. Этот процесс наз. записью сигналов. Закодированная таким способом информация может быть снова воспроизведена в форме выходных электрич. сигналов при повторном сканировании мишени тем же или др. электронным лучом. Этот обратный процесс наз. считыванием. Изменение скорости развёртки при считывании по отношению к скорости при записи позволяет изменить частотный спектр выходных сигналов по сравнению с входными при передаче информации по узкополосным каналам связи. Изменением закона развёртки при считывании можно изменять порядок следования сигналов, что важно, напр., при преобразовании радиолокац. сигнала в телевизионный. Многократное накопление перед считыванием периодич. сигналов, сопровождаемых случайными сигналами (помехами), позволяет увеличить отношение полезного сигнала к помехе. ЭЛП с такими мишенями позволяют также запоминать сигналы и воспроизводить их с задержкой во времени, сравнивать их с последующими сигналами или многократно воспроизводить однократно записанный сигнал. ЭЛП с диэлектрич. мишенями получили назв. запоминающих электроннолучевых трубок. Возможно сочетание диэлектрич. мишеней с люминесцентным экраном в одном ЭЛП для создания запоминаемого видимого изображения (см. Потенциалоскоп). Такие ЭЛП используются для осциллографпрования однократных процессов, создания яркого немерцающего изображения и др. целей.

Особую группу составляют ЭЛП для мгновенного преобразования электрич. сигналов с помощью металлич. мишеней различной структуры. В принадлежащих к этой группе т. н. функциональных ЭЛП плоская мишень имеет множество отверстий, расположенных таким образом, что прозрачность мишени является заданной функцией z = f(x, у) координат х и у мишени. При подаче на обе пары отклоняющих пластин двух независимых электрич. сигналов Ux и Uy , под действием к-рых луч отклоняется на мишени в точку с координатами х и у.в цепи расположенного за мишенью коллектора прошедших сквозь мишень электронов регистрируется выходной сигнал z. Каждый тип функциональных ЭЛП предназначен для реализации к.-л. одной функциональной зависимости (напр.,
30-06-1.jpg

и др.;. ьозможно последоват. соединение неск. функциональных ЭЛП. С помощью металлич. мишени с расположенными по особому закону прямоугольными отверстиями можно преобразовывать аналоговый сигнал в дискретный в форме последоват. или параллельной серии импульсов двоичного кода. ЭЛП с такими мишенями наз. кодирующими (см. Кодирующее устройство). Если мишень разделить на ряд изолированных друг от друга секторов, то ЭЛП с такой мишенью можно использовать в качестве коммутатора слаботочных электрич. цепей (см. Электроннолучевой переключатель),

В зависимости от назначения и принципа действия ЭЛП могут иметь не одну, а неск. электронных пушек и отличаться от простейших значит, конструктивной сложностью при сохранении, однако, осн. принципа - взаимодействия управляемых электронных потоков с мишенями.

Лит.: Шерстнев Л. Г., Электронная оптика и электроннолучевые приборы, М., 1971; Жигарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972; Денбновецкий С. В., Семенов Г. Ф., Запоминающие электроннолучевые трубки в устройствах обработки информации, М., 1973. В.Л.Герус.

ЭЛЕКТРОННООПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ (ЭОП), вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасных, ультрафиолетовых и рентгеновских лучах) в видимое либо для увеличения (усиления) яркости видимого изображения. В основе действия ЭОП лежит преобразование оптич. или рентгеновского изображения в электронное, осуществляемое с помощью фотокатода, и затем электронного изображения в световое (видимое), получаемое на катодолюминесцентном экране (см. Катодо-люминвсценция, Люминофоры). В ЭОП (см. рис.) изображение объекта проецируется (с помощью объектива) на фотокатод (при использовании рентгеновских лучей теневое изображение объекта проецируется на фотокатод непосредственно). Излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причём величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения. Фотоэлектроны ускоряются электрич. полем на участке между фотокатодом и экраном, фокусируются с помощью электрич. или (и) магнитного поля (образующего электронную линзу) и бомбардируют экран, вызывая его люминесценцию. Интенсивность свечения отд. точек экрана зависит от плотности потока фотоэлектронов, вследствие чего на экране возникает видимое изображение объекта. Различают ЭОП одно- и многокамерные (каскадные); последние представляют собой такое последоват. соединение двух или более однокамерных ЭОП, при к-ром световой поток с экрана первого ЭОП (каскада) направляется на фотокатод второго и т. д.

Осн. характеристики ЭОП: 1) интегральная чувствительность (ИЧ) - отношение фототока к интенсивности падающего на фотокатод излучения; определяется гл. обр. свойствами используемого в ЭОП фотокатода; напр., у ЭОП с кислородно-серебряно-цезиевым фотокатодом, применяемого для преобразования изображения в инфракрасных лучах (с дл. волн 0,78-1,5 мкм), ИЧ достигает 70 мка/лм; многощелочной фотокатод (состоит из соединений Sb с Cs и Sb с К и Na), используемый в ЭОП для усиления яркости видимого изображения, обеспечивает ИЧ до 103мка/лм;

2) разрешающая способность, определяемая макс, кол-вом раздельно видимых штрихов изображения на участке экрана дл. 1 мм; лежит в пределах 25-60 и более штрихов на 1 мм;

3) коэффициент преобразования - отношение излучаемого экраном светового потока к лучистому потоку, падающему от объекта на фотокатод; у однокамерных ЭОП составляет неск. тыс., у каскадных - 10б и более.

Осн. недостатки каскадных ЭОП - малая разрешающая способность и сравнительно высокий темновой фон, приводящие к ухудшению качества изображения. Последний недостаток устранён в ЭОП с микроканальным усилителем, предложенным в 1940 сов. инж. И. Ф. Песьяцким. В ЭОП этого типа на пути фотоэлектронов располагается стеклянная пластина, пронизанная множеством каналов диаметром 15- 25 мкм; внутр. стенки каналов покрыты материалом с высоким коэфф. вторичной электронной эмиссии. К пластине прикладывают напряжение в неск. кв, под действием к-рого попавшие в каналы фотоэлектроны ускоряются до энергий, достаточных для возникновения вторичной электронной эмиссии из стенок каналов, что позволяет усилить первичный электронный поток в 105-106 раз. Электроны из каждого канала попадают в соответствующую точку экрана, формируя видимое изображение. В микроканальных ЭОП отпадает необходимость применения электронной фокусировки.

Большой вклад в разработку ЭОП различных типов внесли сов. учёные П. В. Тимофеев, В. В. Сорокина, М. М. Бутслов и др. И. Ф. Усольцев.

ЭОП применяются в инфракрасной технике, спектроскопии, медицине, микробиологии, кинотехнике, ядерной физике и др. областях науки и техники. В кон. 40-х гг. с помощью инфракрасного ЭОП с длинноволновой границей чувствительности 1,1 мкм были сфотографированы спектр ночного неба и невидимая область центр, части нашей Галактики, что стимулировало широкое использование ЭОП в астрономии.

Совр. многокамерные ЭОП позволяют регистрировать на фотоэмульсии световые вспышки {сцинтилляции) от одного электрона, испускаемого входным фстокатодом. Но наряду с этим при наблюдениях слабых (слабоизлучающих или слабоосвещённых) небесных объектов возможно накопление сигналов о таких вспышках в памяти ЭВМ. Существуют спектральные приборы, работающие на этом принципе, к-рые одповроченно регистрируют ок. тысячи элементов спектра небесного светила и столько ЖР элементов спектров сравнения; способность к накоплению информации практически ограничивается объёмом памятг ЭВМ. Такие приборы обеспечивают существенный выигрыш при наблюдении слабых объектов на фоне свечения ночного неба.

Этот выигрыш пропорционален kor кпд t, где кпд - квантовый выход приёмника (отношение числа фотоэлектронов к числу падающих квантов), t - время накопления. Посредством таких приборов может быть осуществлено суммирование изображений, получаемых с помощью неск. телескопов.

В нек-рых типах ЭОП изображение регистрируется матрицей из электроночувствит. элементов (в кол-ве 10-100), установленной вместо люминесцентного экрана. П. В. Щеглов.

Лит.: Зайдель И. Н., Куренков Г. И., Электронно-оптические преобразователи, М., 1970; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, 2 изд., М., 1974; Курс астрофизики и звездной астрономии, под ред. А. А. Михайлова, 3 изд., т. 1, М., 1973; Щ е г л о в П. В., Электронная телескопия, М., 1963.

ЭЛЕКТРОННОСВЕТОВОЙ ИНДИКАТОР, визуальный индикатор точной настройки лампового радиоприёмника на волну принимаемой радиостанции, установки уровня записи в ламповом магнитофоне, установки "нуля" в измерит, радиоаппаратуре; представляет собой комбинированную электронную лампу, в баллоне к-рой совмещены индикаторное устройство и усилит, лампа (обычно триод). Индикаторное устройство содержит след. элементы: люминесцентный низковольтный экран с люминофором, нанесённым либо на металлич. подложку, либо на прозрачную проводящую плёнку на стекле баллона Э. и.; электроды для формирования пучка электронов, испускаемых катодом (общим с усилит, лампой); отклоняющие (управляющие) электроды. Индицируемый сигнал после выпрямления подаётся на управляющую сетку усилит, лампы. От его величины зависит ток в анодной цепи, к-рый, в свою очередь, определяет соотношения потенциалов анода, отклоняющих электродов (соединённых с анодом внутри баллона Э. и.) и экрана (соединённого с анодом через нагрузочный резистор сопротивлением 1-2 Мом). Управляющие электроды так отклоняют электронный пучок, что, падая на экран, он высвечивает на нём две полосы, разделённые тёмным участком. Обычно режим работы Э. и. выбирают таким, что макс, сигналу соответствует макс, сближение светлых полос. М. С. Кауфман.

ЭЛЕКТРОННЫЕ ЛИНЗЫ, устройства, предназначенные для формирования пучков электронов, их фокусировки и получения с их помощью электроннооптических изображений объектов и деталей объектов (см. Электронная и ионная оптика, Электронный микроскоп). Устройства, с использованием к-рых совершают такие же операции над пучками ионов, наз. ионными линзами. В Э. л. и ионных линзах воздействие на электронные (ионные) пучки осуществляется электрич. или магнитными полями; эти линзы наз. соответственно электростатическими или магнитными. Э. л. классифицируют по виду симметрии их поля и по его др. характерным признакам. Терминология, применяемая для характеристики Э. л., в ряде случаев заимствована из классич. оптики световых лучей, что объясняется глубокой аналогией между последней и электронной (ионной) оптикой, а также соображениями наглядности и удобства.

Простейшей осесимметричной электростатич. Э. л. является диафрагма с круглым отверстием, поле к-рой граничит с одной или с обеих сторон с однородными электрич. полями (рис. 1). В зависимости от распределения потенциала она может служить собирающей (пучок заряж. частиц) или рассеивающей линзой. Если поля с обеих сторон осесимметричной электростатич. Э. л. отсутствуют, т. е. к ней примыкают области пространства с постоянными потенциалами V1 и V2, и если эти потенциалы различны, Э. л. наз. иммерсионной (рис. 2); при одинаковых потенциалах линза носит назв. одиночной (такая линза состоит из 3 и более электродов). В результате прохождения электронов через иммерсионную линзу их скорости изменяются, одиночные линзы оставляют эти скорости неизменными. Иммерсионные и одиночные линзы - всегда собирающие.

В нек-рых электростатич. Э. л. одним из электродов служит катод, испускающий электроны (катодные л и н з ы). Линза подобного типа ускоряет испущенные катодом электроны и формирует из них электронный пучок. Катодная Э. л., состоящая лишь из двух электродов - катода и анода, не может сфокусировать электронный пучок, и с этой целью в конструкцию линзы вводят дополнит, электрод, к-рый наз. фокусирующим (рис. 3).

Осесимметричные магнитные линзы выполняются в виде катушки из изолированной проволоки, обычно заключённой в железный панцирь для усиления и концентрации магнитного поля линзы. Для создания линз с очень малыми фокусными расстояниями необходимо максимально уменьшить протяжённость поля; с этой целью применяются полюсные наконечники (рис. 4). Поле магнитной линзы может возбуждаться также постоянным магнитом.

Электродами т. н. цилиндрич. электростатич. Э. л. служат обычно диафрагмы со щелью или пластины, расположенные симметрично относительно средней плоскости линз (рис. 5). Назв. "цилиндрические" указывает, что подобные Э. л. действуют на пучки заряж. частиц так же, как цилиндрич. светооптич. линзы на световые пучки, фокусируя их лишь в одном направлении. Классификация цилиндрич. Э. л. аналогична приведённой для осесимметричных Э. л. (существуют иммерсионные, одиночные, катодные и др. цилиндрич. Э. л.) (рис. 6). Цилиндрическими могут быть и магнитные Э. л. (обычно с железным панцирем).

Поля трансаксиальных электростатич. Э. л. (рис. 7) обладают симметрией вращения относительно оси (ось х на рис.), расположенной перпендикулярно к оптич. оси системы г. В сечениях, параллельных средней плоскости yz такой линзы, эквипотенциальные поверхности имеют форму окружностей или, если поле ограничено, их частей, как и сечения сферич. поверхностей обычных светооптич. линз. Поэтому аберрации трансаксиальной линзы в направлении, параллельном средней плоскости, сравнимы по величине с аберрациями светооптич. линз, т. е. очень малы. Линейное изображение В1 точечного или перпендикулярного к средней плоскости прямолинейного предмета практически не будет претерпевать аберрационного расширения.

Особый класс Э. л. образуют квадрупольные электростатич. и магнитные Э. л. Их поля имеют две плоскости симметрии, а векторы напряжённостей полей в области движения заряж. частиц почти перпендикулярны к их скоростям (рис. 8). Такие линзы фокусируют пучок в одном направлении и рассеивают его в другом, перпендикулярном к первому, создавая линейное изображение точечного предмета. Применяя две установленные одна за другой квадрупольные Э. л. (дублет) (рис. 9), поля к-рых повёрнуты одно по отношению к другому на 90° вокруг их общей оптич. оси, можно получить систему, собирающую пучок в двух взаимно перпендикулярных направлениях и дающую при надлежащем выборе параметров Э. л. стигматическое изображение (точка отображается точкой). Квадрупольные Э. л. могут воздействовать на пучки заряж. частиц со значительно большими энергиями, а в случае магнитных линз - и с большими массами, чем осесимметричные Э. л. Лит. см. при ст. Электронная и ионная оптика. В. М. Келъман, И. В. Родникова.

ЭЛЕКТРОННЫЕ ПРИБОРЫ, приборы для преобразования электромагнитной энергии одного вида в электромагнитную энергию др. вида, осуществляемого посредством взаимодействия электронов (движущихся в вакууме, газе или полупроводнике) с электромагнитными полями. К Э. п. относятся электровакуумные приборы (кроме ламп накаливания) и полупроводниковые приборы.

Протекающие в Э. п. процессы чрезвычайно разнообразны. Так, в электронных лампах и вакуумных приборах СВЧ (клистронах, магнетронах, лампах бегущей волны и т. д.) электроны, испускаемые катодом, взаимодействуют с постоянным и переменным электрич. полями. В результате взаимодействия с постоянным полем кинетич. энергия электронов увеличивается; в результате взаимодействия с переменным полем постоянный электронный поток превращается в переменный и часть кинетич. энергии электронов преобразуется в энергию электрич. колебаний. В вакуумных индикаторах и электроннолучевых приборах электроны ускоряются постоянным электрич. полем и бомбардируют мишень (напр., экран, покрытый люминофором); при взаимодействии электронов с мишенью часть их кинетич. энергии преобразуется в электромагнитную энергию (напр., световую). В вакуумных фотоэлектронных приборах (вакуумных фотоэлементах, фотоэлектронных умножителях и др.) электроны, эмиттируемые фотокатодом под действием оптич. излучения, ускоряются постоянным электрич. полем и направляются на анод. В результате энергия оптич. излучения преобразуется в энергию электрич. тока, текущего в анодной цепи такого Э. п. В рентгеновских трубках энергия электронов, ускоренных на пути от катода к аноду (антикатоду), при ударе электронов об анод частично преобразуется в энергию рентгеновского излучения. В ионных приборах (газоразрядных приборах) электроны, ускоренные постоянным электрич. полем, сталкиваются с молекулами газа и либо ионизируют их, либо переводят в возбуждённое состояние. Такие газоразрядные приборы, как ртутные вентили, газотроны, тиратроны, таситроны, по принципу преобразования энергии аналогичны электровакуумным диодам и триодам; осн. отличие состоит в том, что в газоразрядных приборах ионы газа нейтрализуют пространственный заряд потока электронов и этим обеспечивают прохождение через прибор огромных токов (напр., в ртутных вентилях - до тысяч а) при сравнительно малых анодных напряжениях (15- 20 в). В газоразрядных источниках света и индикаторах газоразрядных каждая возбуждённая молекула газа при переходе в равновесное состояние излучает световую энергию. В люминесцентных лампах световую энергию излучают молекулы люминофора, возбуждённые ультрафиолетовым излучением разряда. В квантовых газоразрядных приборах (газовых лазерах, квантовых стандартах частоты и др.) возбуждённые молекулы газа, взаимодействуя с электромагнитными колебаниями, усиливают их при своём переходе в невозбуждённое состояние.

Преобразование энергии в полупроводниковых приборах основано на том, что в полупроводнике, как и в вакууме, можно создавать постоянные электрич. поля и осуществлять управление движением носителей заряда. В основе работы полупроводниковых приборов лежат след, электронные процессы и явления: эффект односторонней проводимости при протекании тока через запирающий слой электронно-дырочного перехода (р - п-перехода) или потенциального барьера на границе металл-полупроводник (см. Шотки диод); туннельный эффект; явление лавинного размножения носителей в сильных электрич. полях; акусто-, оптико-, термоэлектрич. эффекты в ди-электрич. и полупроводниковых материалах и т. д. На использовании эффекта односторонней проводимости основана работа полупроводниковых диодов. В транзисторах для усиления электрич. колебаний используют т. н. транзисторный эффект - управление током запертого перехода с помощью тока отпертого перехода. В Ганна диодах и лавинно-пролётных полупроводниковых диодах лавинное умножение в р - я-переходах, обусловленное ударной ионизацией атомов носителями, используется для генерации электрич. колебаний. В светоизлучающих диодах электрич. энергия преобразуется в энергию оптич. излучения на основе явления инжекционной электролюминесценции.

Э. п. находят применение в радиотехнике, автоматике, связи, вычислит, технике, астрономии, физике, медицине и т. д.- практически во всех областях науки и техники. Мировая пром-сть ежегодно выпускает (70-е гг.) св. 10 млрд. Э. п. различных наименований.

Лит.: Власов В. Ф., Электронные и ионные приборы. 3 изд.. М., 1960; К у ш м а н о в И. В., Васильев Н. Н., Л е-о н т ь е в А. Г., Электронные приборы, М , 1973. , В. Ф. Коваленко.

ЭЛЕКТРОННЫЕ ПРИЗМЫ, электроннооптические (соответственно ионные призмы - ионнооптические) системы, предназначенные для отклонения пучков заряженных частиц или для разделения таких частиц по энергии и массе. Э. п. получили своё назв. в рамках общей аналогии между электронной и ионной оптикой и оптикой световых лучей. Среди многочисл. типов Э. п. наиболее близкими аналогами светооптич. призм являются те Э. п., к-рые оставляют падающий на них параллельный пучок заряженных частиц параллельным и после отклонения. Простейшей электростатич. Э. п. такого типа служит телескопическая система, составленная из двух цилиндрических иммерсионных электронных линз (рис. 1). Задний линейный фокус АВ первой линзы совпадает с передним линейным фокусом второй. Электростатич. поле телескопич. системы "двухмерно" (оно не изменяется в направлении, параллельном оси х) и симметрично относительно средней плоскости ху, вблизи к-рой движутся частицы. Параллельный пучок падает на телескопич. систему под большим углом 6i к оси у и выходит под углом fh, сохраняя свою параллельность. При этом выполняется равенство
30-06-2.jpg

V1 - потенциал первого участка Э. п. и пространства перед ним, V2 - потенциал последнего участка призмы и пространства за ним. Как известно, потенциал электростатический можно определять с точностью до произвольной постоянной, принимая его равным нулю там, где это диктуется соображениями удобства. В данном случае, как и в большинстве задач электронной и ионной оптики, потенциал принимают равным нулю там, где равна нулю скорость частиц. При этом условии электроннооптич. преломления показатель
30-06-3.jpg

о., отклонение пучка заряж. частиц в телескопич. системе подчиняется закону, совершенно аналогичному Снелля закону преломления в световой оптике. Для увеличения дисперсии применяют сложную Э. п., состоящую из двух телескопич. систем, расположенных под углом друг к другу. Такие Э. п. служат диспергирующими элементами в электронных спектрометрах. В магнитной Э. п. с -"двухмерным" полем роль цилиндрич. линз играют поля рассеяния на краях магнитных полюсов. При определённом угле падения пучка на призму эти поля образуют телескопич. систему (рис. 2).

Лит.: Арцимович Л. А., Лукьянов С. Ю., Движение заряженных частиц в электрических и магнитных полях, М., 1972; Кельман В. М., Я в о р С. Я., Электронная оптика, 3 изд., Л., 1968; Призменные бета-спектрометры и их применение, Вильнюс, 1971; Применение призменных бета-спектрометров, Вильнюс, 1974.

В. М. Кельман, И. В. Родникова.